Борис Федорович Сергеев Занимательная физиология



страница5/14
Дата26.04.2016
Размер3.2 Mb.
1   2   3   4   5   6   7   8   9   ...   14

Миллиарды носильщиков




Оно не смеет уставать

На 18 й день после зачатия в крохотном, не больше горошины комочке клеток, человеческом зародыше сердце начинает биться и уже не останавливается до самой нашей смерти. Это, пожалуй, единственный орган, который даже у самых отъявленных лентяев не увиливает от работы и трудится в хорошем темпе. Подумать только, у такого крохотули, как трехнедельный человеческий эмбрион, у которого еще даже нет настоящей крови, сердце делает по одному сокращению каждую секунду. Позже, когда ребенок уже родится, пульс еще больше учащается, доходя до 140 сокращений в минуту. К счастью, это кульминация, постепенно пульс становится реже, и у взрослого человека его частота в покое в среднем равняется 76 в минуту, возрастая при усиленной работе в два с половиной раза. В итоге за 100 лет человеческой жизни сердце успевает сделать около 5 миллиардов сокращений!

Когда вдумаешься в эту цифру, прежде всего поражает, что сердце не устает, и, пока здорово, легко справляется со своей работой, ни на секунду (буквально ни на секунду!) ее не прекращая.

У человека обмен веществ стоит не на очень высоком уровне. У мелких теплокровных животных он значительно выше. Дело в том, что с уменьшением размера тела площадь его сокращается гораздо медленнее. Поэтому мелким организмам приходится вырабатывать на каждый грамм их тела значительно больше тепла, чем крупным. Интенсивность обмена веществ у них выше, а следовательно, и сердце должно работать более энергично, чем у человека. Действительно, чем животное меньше, тем сердце у него бьется быстрее. У кита, например, при весе тела 150 тонн сердце делает семь сокращений в минуту; у слона, вес которого 3 тонны, – 46; у кошки (вес 1,3 килограмма) – 240; а у синицы московки (весит она 8 граммов) – 1200.

Чем же объясняется, что сердце может работать в таком темпе? Прежде всего само представление о том, что сердце трудится без передышки, не совсем верно. Сердечная мышца тоже отдыхает и даже довольно часто, но только очень маленькими порциями. Сокращение сердца длится примерно 0,49 секунды, и если человек в этот момент находится в покое, то после каждого сокращения на 0,31 секунды наступает перерыв. На самом деле время отдыха еще больше, так как не все отделы сердца работают одновременно.

Сердечный цикл начинается с сокращения предсердий, желудочки в это время отдыхают. Сокращение предсердий сменяется сокращением желудочков; в это время отдыхают предсердия. Предсердия тратят на свое сокращение примерно 0,11–0,14 секунды, и после каждого сокращения их отдых длится 0,66 секунды, что составляет в сутки всего 3,5–4 часа работы и около 20 часов отдыха. Сокращение желудочков продолжается несколько дольше, около 0,27–0,35 секунды, а отдых 0,45–0,53 секунды. Следовательно, в сутки желудочки сердца работают 8,5–10,5 и отдыхают 13,5–15,5 часа.

Сердце умудряется отдыхать и у маленьких птичек. У них оно сокращается гораздо чаще, зато чаще и отдыхает. У синичек лазоревок при частоте сокращения сердца 1000 раз в минуту время одиночного сокращения предсердий равняется 0,014, последующего отдыха 0,046, сокращения желудочков занимают 0,024, а их отдых длится 0,036 секунды. Таким образом, предсердия работают всего 5 часов 40 минут и отдыхают 18 часов 20 минут, а работа желудочков длится 9 часов 36 минут и отдых – 14 часов 24 минуты. Ничуть не хуже, чем у человека.

Впрочем, человек в состоянии значительно улучшить условия работы своего сердца, намного увеличив продолжительность его покоя. Как показывают медицинские исследования, у хорошо тренированных спортсменов частота сокращений сердца в покое значительно меньше, чем у всего остального человечества, и может падать до 40 и даже 28 ударов в минуту.

Чтобы справиться с такой колоссальной нагрузкой, какая выпала на долю сердца, одного отдыха мало, нужно еще хорошо питаться, получать достаточно кислорода. Поэтому у высших животных сердце имеет свою очень мощную кровеносную систему.

Низшие животные искали свои пути снабжения сердца. Природа на миллиарды лет предвосхитила афоризм Наполеона о том, что путь к сердцу солдата лежит через желудок. Создавая пластинчатожаберных (двустворчатых) моллюсков, она решила насквозь пронзить их сердце, но не стрелой амура, а всего лишь задней кишкой. Зачем кишке понадобилось пройти сквозь желудочек сердца моллюска, неизвестно. Конечно, это самый простой способ снабдить кровь пищевыми веществами; не исключено, что значительнее всего улучшается питание самой сердечной мышцы.

Основная задача сердечно сосудистой системы – транспорт всего необходимого во все уголки организма. Одни вещества плывут в крови сами по себе, другие, главным образом газы, путешествуют на спинах эритроцитов. В каждом кубическом миллиметре крови 4,5–5 миллионов носильщиков. А всего их 35 000 000 000 000, самый большой караван на свете. Размер эритроцитов ничтожен, всего 8 микрон, но если их построить цепочкой, как ходят по пустыням верблюды, получилась был ленточка, которой можно семь раз опоясать по экватору земной шар. А из эритроцитов кита, самого большого существа на Земле, вероятно, можно было бы составить несколько караванов, каждый из которых протянулся бы до солнца.

Транспортная система животных развилась не сразу. Когда частички живого вещества впервые слиплись в самостоятельный одноклеточный организм и отгородились от океана оболочкой, природе пришлось подумать о том, как организовать транспорт внутри одноклеточного организма. Решение было найдено скоро. Природа строила клетку как микроскопический океан и создала в нем свои течения. Эта низшая по рангу внутриклеточная транспортная система сохранилась и у многоклеточных животных, есть она и у нас. Протоплазма любой клеточки нашего тела подвижна, протоплазматические токи существуют даже в нервных клетках.

Многоклеточным животным пришлось организовывать более сложную систему. Самые примитивные из них, например губки, используют для этого воду, в которой обитают. Океанские течения показались им ненадежными, и на них губки решили не полагаться. Вместо этого с помощью ресничек они заставляют морскую воду течь по каналам и порам своего тела, доставляя во все уголки пищу и кислород.

Высшие животные полностью отгородились от океана, а для транспортных нужд обзавелись собственным аквариумом. Самые большие аквариумы имеют в наши дни брюхоногие моллюски, объем их крови равняется 90 процентам от объема тела. Это, видимо, оказалось слишком роскошно. У личинок насекомых аквариум уже не превышает 40 процентов веса тела, а у взрослых насекомых 25, у птиц и млекопитающих аквариум еще меньше, всего 7–10, и, наконец, самый миниатюрный водоем у рыб, он составляет всего 1,5–3 процента от веса тела.

Чем меньшим аквариумом владеет животное, тем интенсивнее его приходится использовать, тем более быстрые течения необходимы в нем, чтобы одну и ту же жидкость можно было использовать многократно. Не удивительно, что насекомые могут позволить себе роскошь иметь в своем аквариуме очень медленное течение, которое совершает полный кругооборот нередко за 30–35 минут. Мы с вами позволить себе этого не можем. Кровь нашего внутреннего аквариума совершает полный круг всего за 23 секунды, делая за сутки свыше 3700 оборотов, и это еще не предел. У собаки на полный кругооборот затрачивается 16, у кролика 7,5 секунды, а у мелких животных и того меньше.

У позвоночных животных дело осложняется еще тем, что сам аквариум очень большой, а воды в нем мало. Она не может заполнить его целиком. У человека общая протяженность всех сосудов около 100 тысяч километров. Обычно большая часть их пуста. 7–10 литров крови для этого явно недостаточно, и интенсивно снабжаются только усиленно работающие органы. Поэтому одновременная напряженная работа многих систем невозможна. После сытного обеда наиболее энергично функционируют органы пищеварения, к ним и направляется значительная часть крови, для нормальной работы головного мозга ее начинает не хватать, и мы испытываем сонливость.

Чтобы приводить в движение воды внутреннего аквариума, потребовались устройства, принципиально отличные от реснитчатого аппарата губок. Гораздо надежнее оказались мышечные насосы. Поначалу это был всего лишь пульсирующий сосуд, наиболее просто устроенное сердце, которым гемолимфа перегонялась в более мелкие сосуды, а оттуда в межтканевые и межклеточные пространства. Омыв их, она вновь возвращалась в пульсирующий сосуд. При такой незамкнутой системе очень трудно организовать правильную циркуляцию, поэтому у насекомых, самых высших представителей беспозвоночных, возникли насосы, которые могут не только нагнетать, но и засасывать. Для этого их сердце свободно подвешено на специальных крыловидных мышцах, которые растягивают его, создавая отрицательное давление, засасывающее прошедшую через ткани жидкость.

Пульсирующий сосуд – маломощный агрегат, поэтому низшие животные обычно имеют множество насосных устройств. У дождевого червя главный пульсирующий сосуд, протянувшийся через все тело, гонит кровь от заднего конца к переднему, а по пути она растекается в боковые сосуды, которые сами являются сердцами, проталкивающими кровь в более мелкие артерии. Все эти многочисленные сердца работают как кому вздумается, в лучшем случае они согласуют свою работу с партнером по сегменту. Дальше этого организация не идет.

Высшим животным показалось целесообразно отгородиться не только от внешнего, но и от внутреннего океана, создав замкнутую циркулирующую систему. Впрочем, полностью эта задача до сих пор еще не решена. Главное русло внутренней реки – сердечно сосудистая система млекопитающих замкнута, но в нее впадает множество ручьев – лимфатических сосудов, по которым течет жидкость из межтканевых и межклеточных пространств.

Таким образом, получилось, что ткани и органы полностью отгородились от непосредственного проникновения в них вод внутреннего океана, но сохранили за собой право сливать в этот подвижный резервуар свои воды. Конечно, обособленность внутреннего океана очень относительна. В артериальной части капилляров, стенка которых достаточно тонка, а давление крови еще высоко, определенное количество жидкости просачивается в межклеточные пространства. Выход жидкости был бы еще более высок, так как сами берега не в состоянии надежно ее удерживать, если бы не высокое онкотическое давление крови (оно обусловлено растворенными в ней белками), которое не дает воде покидать растворенные в ней белки.

Во время покоя в ткани просачивается небольшое количество воды, и она вся возвращается обратно в венозной части капилляра, где кровяное давление оказывается ниже онкотического давления плазмы и жидкость начинает активно привлекаться в плазму растворенными в ней белками. Сила, которая в венозной части капилляра заставляет жидкость возвращаться в кровяное русло, примерно в два раза больше той, которая в артериальной части вынудила ее уйти в межтканевые пространства, поэтому она вся без остатка возвращается назад.

Совершенно иная картина наблюдается во время работы. В этом случае кровяное давление в артериальной части капилляра будет столь высоко, что их стенки не смогут удерживать не только воду, но и белки. В венозной части капилляра кровяное давление будет оставаться еще достаточно высоким, а онкотическое давление из за потери белков снизится, и у жидкости не будет ни стимула, ни возможности вернуться назад в кровяное русло. Для нее останется один путь – лимфатическая система. Таким образом, лимфатическая система выполняет в организме ту же функцию, что и ливневая система наших городов, предохраняющая улицы и площади от затопления во время больших ливней и гроз.

Может показаться, что появление строго замкнутой системы облегчило работу сердца. Ничуть не бывало! Чтобы протолкнуть кровь через капилляры и мельчайшие артериолы, нужна немалая сила. Хотя по мере ветвления артерий их общая суммарная площадь сечения возрастает, становясь в конечном итоге в 800 раз больше сечения аорты, по которой кровь вытекает из сердца, сопротивление от этого только увеличивается. Ведь у нас 100–160 миллиардов капилляров, а их общая длина равняется 60–80 тысячам километров. Известный русский физиолог И.Ф. Цион подсчитал, что в течение человеческой жизни наше сердце успевает совершить работу, равную усилию, которого было бы достаточно, чтобы на высочайшую вершину Европы Монблан, на высоту 4810 метров, поднять железнодорожный состав!

Даже у человека, находящегося в относительном покое, сердце в течение минуты перекачивает 6 литров крови, а за день не меньше 6–10 тонн. В течение жизни через наше сердце пройдет 150–250 тысяч тонн крови. При этом человек похвастаться работой своего сердца не может.

Так как трудно непосредственно сравнивать работу сердца больших и маленьких животных, ученые обычно высчитывают, какое количество крови в одну минуту перекачивает сердце на каждые 100 граммов веса тела. Анализ показывает, что даже у медлительной улитки сердце работает примерно с такой же нагрузкой, как у человека, а у большинства животных значительно интенсивнее. Сердце собаки перекачивает примерно в два раза больше крови, а сердце кошки даже в 10 раз.

При этом в артериях создается довольно высокое давление. Даже у таких маленьких животных, как личинка стрекозы или лягушка, оно достигает 30–38 миллиметров ртутного столба. В большинстве случаев давление еще выше. У осьминога оно 60, у крысы – 75, у человека – 160–180, а у лошади даже 200 миллиметров ртутного столба.

Обычно чем крупнее животное, тем выше у него давление. Это особенно наглядно видно на угрях, акулах и других рыбах, размеры которых сильно варьируют. Чем длиннее угорь или акула, тем выше у них давление крови. Из этого правила, однако, есть немало исключений. Одно из них – петух. В его сосудах такое же давление, как и у лошади.

Совершенно ясно, что сердце кита блювала, весящее 600–700 килограммов, даже если будет трудиться совсем плохо, наработает гораздо больше, чем сердце синички московки, весящее почти в 5 миллиардов раз меньше, то есть всего 0,15 грамма. Чтобы сделать правильную оценку, сравнивают работу, которую выполняет 1 грамм сердечной мышцы. И здесь человеку нечем особенно гордиться. Грамм нашего сердца выполняет работу, равную 4000 грамм сантиметров в минуту, примерно такую же работу выполняет сердце улитки. Сердце лягушки трудится в 3 раза интенсивнее, кролика в 5 раз, а белой мыши в 12 раз!

Большинство живущих на земле животных горизонтальные. Головной мозг и сердце – два самых важных органа – находятся у них на одном уровне. Это очень удобно: не нужно дополнительных усилий, чтобы снабжать мозг кровью. Другое дело человек, мозг которого расположен значительно выше сердца, или шестиметровый жираф, сердце которого лежит на 2–3 метра ниже мозга. У всех подобных существ (петух, человек, жираф) высокое давление.

Сердце типично горизонтальных животных неспособно обеспечивать кровоснабжение мозга при неестественной позе. Если кролику или змее придать вертикальное положение, они очень скоро «потеряют сознание» из за анемии мозга. Не менее тяжело переносится и обратное изменение позы, когда голова оказывается значительно ниже сердца. В этом случае снабжение мозга кровью расстраивается из за нарушения оттока, однако в животном мире немало клоунов виртуозов, вроде летучих мышей, для которых положение тела не имеет существенного значения.

В работе сердечно сосудистой системы скрыто очень существенное противоречие. С одной стороны, чтобы поддерживать кровоснабжение на нужном уровне, необходимо создать высокое давление. С другой стороны, чем выше давление, тем больше вероятность аварии. В любой момент система может не выдержать. Если прорыв произошел в крупном сосуде, быстрая смерть от массивной потери крови неизбежна.

Чтобы давление в системе не превысило нормы, существуют особые контрольные органы – барорецепторы. Важнейшие из них расположены у млекопитающих в дуге аорты, в каротидных синусах сонных артерий, несущих кровь в мозг, в предсердиях и в окончаниях болевых нервов. О малейшем изменении давления они немедленно сигнализируют в продолговатый мозг. Восстановление нормального давления осуществляется не столько деятельностью сердца, сколько с помощью сосудов. Стенки мелких сосудов – артериол снабжены мышцами и легко изменяют свой просвет. Сужаясь, они создают известные препятствия току крови и вызывают тем повышение давления, но могут расшириться так, что давление снизится до критического уровня и циркуляция крови нарушится.

Сердце бьется всю жизнь, сокращение за сокращением, днем и ночью, в жару и в мороз. В крохотном комочке клеток у 29 часового зародыша цыпленка уже что то пульсирует, уже гонит куда то жидкость. Кто заставляет сердце сокращаться? Кто приказал сердцу куриного эмбриона начать работать? У него ведь еще нет даже и намека на мозг, который позже берет бразды правления над организмом.

Оказывается, даже у взрослых животных сердце хотя и подчиняется командам мозга об изменении характера работы, замедляя или, наоборот, ускоряя свой ритм, но может вполне обходиться и без них. Говоря фигурально, наше сердце работает по собственной инициативе, особенность, которую мы как то не ценим. Если в культуре тканей на особых питательных средах выращивать волокна сердечной мышцы эмбриона, они и в пробирке ритмически сокращаются, не ожидая ничьих указаний, и просто не в состоянии жить не сокращаясь.

Без верховного командования слаженная работа все же идти не может. Если бы каждое мышечное волокно сокращалось когда ему заблагорассудится, общее сокращение могло бы произойти лишь случайно. Так в действительности и бывает в самые ранние периоды жизни зародышей. У крысиного эмбриона отдельные участки сердца сокращаются независимо друг от друга, пока не подрастет и не начнет работать командный пункт. У птиц и млекопитающих он расположен в особом отделе сердца, который носит название синоаурикулярного узла.

В сердечной мышце нет нервов, и приказы распространяются просто по мышечным волокнам со скоростью 1 метр в секунду. Для нормального сокращения предсердий такой скорости вполне достаточно. Более крупным желудочкам сердца потребовалась более быстрая система передачи команд – волокна Пуркинье, по которым возбуждение распространяется в 5–6 раз быстрее.

У всех порядочных животных в сердце есть только один командный центр, или ритмоводитель. Будь их больше, произошла бы неразбериха. Бывают, конечно, и курьезы. У асцидий и некоторых оболочников два ритмоводителя, по одному на каждом конце пульсирующего сосуда. Кровь у этих животных движется то в ту, то в другую сторону.

Благодаря тому, что сердце позвоночных животных обладает собственным автоматизмом, оно может работать, даже извлеченное из тела. Первоначальные испытания всех новых сердечных препаратов проводят на изолированном лягушачьем сердце, которое при правильной постановке экспериментов сохраняет свою работоспособность в течение многих часов.

Очень распространено ошибочное представление, что смерть обязательно означает и остановку работы сердца. В действительности это не совсем так. Русский врач Андреев сумел заставить сокращаться сердце новорожденного ребенка спустя четверо суток после его смерти.

Несколько столетий назад об этом и не подозревали. Очень известного врача императора Карла V Андрея Везалия, которому в числе немногих ученых было даровано право вскрывать трупы людей, святейшая инквизиция приговорила к смертной казни по обвинению в том, что он вскрыл тело еще живой женщины. Только благодаря особому расположению наследника престола Филиппа II этот страшный и к тому же несправедливый приговор заменили покаянным паломничеством к святым местам на горе Синай и в Иерусалим, во время которого, впрочем, Везалий и погиб.

Причиной обвинения крупнейшего ученого той эпохи и очень известного врача явились сокращения сердечной мышцы у бесспорно умершей женщины, которую Везалий вскрывал в присутствии многочисленных зрителей. Почему ее сердце продолжало работать спустя много часов после смерти, сейчас установить невозможно. В тот момент ни у кого из ошеломленных зрителей, очевидцев этого страшного зрелища, не возникло ни тени сомнения в том, что женщина была жива. Сам Везалий был убежден, что допустил халатность, и считал вынесенный ему приговор справедливым.

Волны

О берега нашего собственного океана бьются волны, только они совсем не голубые, а алые. Впрочем, венозная кровь, насыщенная углекислотой и другими продуктами обмена, имеет синеватый оттенок. Это, видимо, было известно еще в XI веке. Во всяком случае, высшее дворянство, приближенные короля Кастилии, одного из первых королевств Пиренейского полуострова, сумевшего сбросить мавританское иго, утверждали, что в их жилах течет «голубая кровь». Тем самым они хотели показать, что никогда не роднились с маврами, чья кровь считалась более темной. На самом же деле этой привилегией пользуются лишь некоторые ракообразные, кровь у которых действительно голубая.

Воды внутреннего моря содержат все, что необходимо клеткам организма. У самых низших организмов тканевые жидкости по своему составу мало чем отличаются от обычной морской воды. По мере усложнения животных состав гемолимфы и крови начинает меняться. В ней, кроме солей, появляются физиологически активные вещества, витамины, гормоны, белки, жиры и даже сахара. В наши дни самой сладкой кровью обладают птицы, меньше всего сахара в крови рыб.

Основная функция крови – транспортная. Она разносит по телу тепло, забирает в кишечнике питательные вещества, а в легких кислород и доставляет их потребителям. У самых низших животных кислород, как и другие необходимые вещества, просто растворяются в циркулирующей по телу жидкости. Высшие животные обзавелись специальным веществом, которое легко вступает в соединение с кислородом, когда его много, и легко с ним расстается, когда его становится мало. Такие удивительные свойства оказались присущи некоторым сложным белкам, молекула которых содержит железо и медь. Гемоцианин, белок, содержащий медь, имеет голубой цвет; гемоглобин и другие сходные белки, содержащие в своей молекуле железо, – красный.

Молекула гемоглобина состоит как бы из двух частей – собственно белка и железосодержащей части. Эта последняя у всех животных одинакова, зато для белковой характерны специфические черты, по которым можно различить даже очень близких животных.

Все, что содержится в крови, все, что несет она по сосудам, предназначено для клеток нашего тела. Они отбирают из нее все необходимое и используют на собственные нужды. Только кислородсодержащее вещество должно остаться нетронутым. Ведь если оно будет оседать в тканях, разрушаться там и использоваться на нужды организма, трудно станет транспортировать кислород.

Поначалу природа пошла на создание очень крупных молекул, молекулярный вес которых в два, а то и в десять миллионов раз больше атома водорода, самого легкого вещества. Такие белки неспособны проходить сквозь клеточные мебраны, «застревая» даже в довольно крупных порах; вот почему они подолгу сохранялись в крови и могли многократно использоваться. Для высших животных было найдено еще более оригинальное решение. Природа снабдила их гемоглобином, молекулярный вес которого лишь в 16 тысяч раз больше, чем у атома водорода, но, чтобы гемоглобин не достался окружающим тканям, поместила его, как в контейнеры, внутрь специальных, циркулирующих вместе с кровью клеток – эритроцитов.

Эритроциты большинства животных круглые, хотя иногда их форма почему то меняется, становится овальной. Среди млекопитающих такими уродами являются верблюды и ламы. Зачем в конструкцию эритроцита этих животных понадобилось вводить столь значительные изменения, пока точно не известно.

Поначалу эритроциты были большие, громоздкие. У протея, реликтовой пещерной амфибии, их диаметр 35–58 микрон. У большинства амфибий они значительно меньше, однако иногда их объем достигает 1100 кубических микрон. Это оказалось неудобно. Ведь чем больше клетка, тем относительно меньше ее поверхность, через которую в обе стороны должен проходить кислород. На единицу поверхности приходится слишком много гемоглобина, что мешает его полноценному использованию. Убедившись в этом, природа пошла по пути уменьшения размеров эритроцитов до 150 кубических микрон для птиц и до 70 для млекопитающих. У человека их диаметр равен 8 микронам, а объем 90 кубическим микронам.

Эритроциты многих млекопитающих еще мельче, у коз едва достигают 4, а у кабарги 2,5 микрона. Почему именно у коз такие мелкие эритроциты, понять нетрудно. Предки домашних коз были горными животными и жили в сильно разреженной атмосфере. Недаром количество эритроцитов у них огромно, 14,5 миллиона в каждом кубическом миллиметре крови, тогда как у таких животных, как амфибии, интенсивность обмена веществ которых не велика, всего 40–170 тысяч эритроцитов.

В погоне за уменьшением объема красные кровяные клетки позвоночных животных превратились в плоские диски. Так максимально сократился путь диффундирующих в глубь эритроцита молекул кислорода. У человека, кроме того, в центре диска с обеих сторон есть вдавления, что позволило еще больше сократить объем клетки, увеличив размер ее поверхности.

Транспортировать гемоглобин в специальной таре внутри эритроцита очень удобно, но добра без худа не бывает. Эритроцит – живая клетка и сам потребляет для своего дыхания массу кислорода. Природа не терпит расточительства. Ей немало пришлось поломать голову, чтобы придумать, как сократить ненужные расходы.

Самая важная часть любой клетки – ядро. Если его тихонечко удалить, а такие ультрамикроскопические операции ученые умеют делать, то безъядерная клетка, хотя и не гибнет, все же становится нежизнеспособной, прекращает свои основные функции, резко сокращает обмен веществ. Вот это и решила использовать природа, она лишила взрослые эритроциты млекопитающих их ядер. Основная функция эритроцитов – быть контейнерами для гемоглобина – функция пассивная, и пострадать она не могла, а сокращение обмена веществ было только на руку, так как при этом сильно уменьшается и расход кислорода.

Кровь не только транспортное средство. Она выполняет и другие важные функции. Передвигаясь по сосудам тела, кровь в легких и кишечнике почти что непосредственно соприкасается с внешней средой. И легкие и особенно кишечник, бесспорно, самые грязные места организма. Не удивительно, что здесь в кровь очень легко проникнуть микробам. Да и почему бы им не проникать? Кровь – чудесная питательная среда, притом богатая кислородом. Если не поставить тут же, при входе, бдительных и неумолимых стражей, дорога жизни организма стала бы дорогой его смерти.

Стражи нашлись без труда. Еще на заре возникновения жизни все клетки организма были способны захватывать и переваривать частички пищевых веществ. Почти в то же время организмы обзавелись подвижными клетками, очень напоминающими современных амеб. Они не сидели сложа руки, ожидая, когда ток жидкости принесет им что нибудь вкусненькое, а проводили жизнь в постоянных поисках хлеба насущного. Эти бродячие клетки охотники, с самого начала включившиеся в борьбу с попавшими в организм микробами, получили название лейкоцитов.

Лейкоциты – самые крупные клетки человеческой крови. Их размер колеблется от 8 до 20 микрон. Эти одетые в белые халаты санитары нашего организма еще длительное время принимали активное участие в пищеварительных процессах. Они выполняют эту функцию даже у современных амфибий. Не удивительно, что у низших животных их очень много. У рыб в 1 кубическом миллиметре крови их бывает до 80 тысяч, в десять раз больше, чем у здорового человека.

Чтобы успешно бороться с патогенными микробами, необходимо очень много лейкоцитов. Организм производит их в огромных количествах. Ученым пока не удалось выяснить продолжительность их жизни. Да вряд ли она может быть точно установлена. Ведь лейкоциты – солдаты и, видимо, никогда не доживают до старости, а гибнут на войне, в схватках за наше здоровье. Вероятно, поэтому у различных животных и в различных условиях опыта получились очень пестрые цифры – от 23 минут до 15 дней. Более точно удалось установить лишь срок жизни для лимфоцитов – одной из разновидностей крохотных санитаров. Он равняется 10–12 часам, то есть за сутки организм не меньше двух раз полностью обновляет состав лимфоцитов.

Лейкоциты способны не только странствовать внутри кровяного русла, но при надобности легко его покидают, углубляясь в ткани, навстречу попавшим туда микроорганизмам. Пожирая опасных для организма микробов, лейкоциты отравляются их сильнодействующими токсинами и гибнут, но не сдаются. Волна за волной сплошной стеной они идут на болезнетворный очаг, пока сопротивление врага не будет сломлено. Каждый лейкоцит может «проглотить» до 20 микроорганизмов.

Массами выползают лейкоциты на поверхность слизистых оболочек, где всегда много микроорганизмов. Только в ротовую полость человека – 250 тысяч ежеминутно. За сутки здесь на боевом посту гибнет 1/80 часть всех наших лейкоцитов.

Лейкоциты борются не только с микробами. Им поручена еще одна очень важная функция: уничтожать все поврежденные, износившиеся клетки. В тканях организма они постоянно ведут демонтаж, расчищая места для строительства новых клеток тела, а молодые лейкоциты принимают участие и в самом строительстве, во всяком случае в строительстве костей, соединительной ткани и мышц.

В юности каждый лейкоцит должен решить, кем быть, и в случае надобности становится фагоцитом и идет в бой на микробов, фибробластом – и отправляется на стройку или даже превращается в жировую клетку и, пристроившись где нибудь к своим собратьям, не торопясь коротает век.

Безусловно, одним лейкоцитам не удалось бы отстоять организм от проникающих в него микробов. В крови любого животного много различных веществ, которые способны склеивать, убивать и растворять попавших в кровеносную систему микробов, превращать в нерастворимые вещества и обезвреживать выделяемый ими токсин. Некоторые из этих защитных веществ мы получаем по наследству от родителей, другие учимся вырабатывать сами в борьбе с окружающими нас бесчисленными врагами.

Как ни внимательно контрольные приборы – барорецепторы следят за состоянием кровяного давления, всегда возможна авария. Еще чаще беда приходит со стороны. Любая, даже самая незначительная, рана разрушит сотни, тысячи сосудов, и через эти пробоины сейчас же хлынут наружу воды внутреннего океана.

Создавая для каждого животного индивидуальный океан, природе пришлось озаботиться организацией аварийной спасательной службы на случай разрушения его берегов. Поначалу эта служба была не очень надежной. Поэтому для низших существ природа предусмотрела возможность значительного обмеления внутренних водоемов. Потеря 30 процентов крови для человека смертельна, японский жук легко переносит потерю 50 процентов гемолимфы.

Если судно в море получает пробоину, команда старается заткнуть образовавшуюся дыру любым подсобным материалом. Природа в изобилии снабдила кровь собственными заплатками. Это специальные веретенообразные клетки – тромбоциты. По своим размерам они ничтожно малы, всего 2–4 микрона. Заткнуть такой крохотной затычкой сколько нибудь значительную дыру было бы невозможно, если бы тромбоциты не обладали способностью слипаться под воздействием тромбокиназы. Этим ферментом природа богато снабдила ткани, окружающие сосуды, кожу и другие места, больше всего подверженные травмам. При малейшем повреждении тканей тромбокиназа выделяется наружу, входит в соприкосновение с кровью, и тромбоциты немедленно начинают слипаться, образуя комочек, а кровь несет для него все новый и новый строительный материал, ведь в каждом кубическом миллиметре крови их содержится 150–400 тысяч штук.

Сами по себе тромбоциты большой пробки образовать не могут. Затычка получается благодаря выпадению нитей особого белка – фибрина, который в виде фибриногена постоянно присутствует в крови. В образованной сети из волокон фибрина застревают комочки слипшихся тромбоцитов, эритроциты, лейкоциты. Проходят считанные минуты, и образуется значительная пробка. Если поврежден не очень крупный кровеносный сосуд и давление крови в нем не настолько велико, чтобы вытолкнуть пробку, утечка будет ликвидирована.

Вряд ли рентабельно, чтобы дежурная аварийная служба потребляла много энергии, а значит и кислорода. Перед тромбоцитами стоит единственная задача – слипнуться в минуту опасности. Функция пассивная, не требующая от тромбоцита значительных затрат энергии, значит, незачем потреблять кислород, пока все в организме спокойно, и природа поступила с ними так же, как и с эритроцитами. Она лишила их ядер и тем самым, сократив уровень обмена веществ, сильно снизила расход кислорода.

Совершенно очевидно, что хорошо налаженная аварийная служба крови необходима, но она, к сожалению, грозит организму страшной опасностью. Что, если по тем или иным причинам аварийная служба начнет не вовремя работать? Такие неуместные действия приведут к серьезной аварии. Кровь в сосудах свернется и закупорит их. Поэтому кровь имеет вторую аварийную службу – антисвертывающую систему. Она следит, чтобы в крови не было тромбина, взаимодействие которого с фибриногеном приводит к выпадению нитей фибрина. Как только тромбин появляется, антисвертывающая система немедленно его инактивирует.

Вторая аварийная служба работает очень активно. Если в кровь лягушки ввести значительную дозу тромбина, ничего страшного не произойдет, он тут же будет обезврежен. Зато если теперь взять у этой лягушки кровь, окажется, что она потеряла способность свертываться.

Первая аварийная система работает автоматически, второй командует мозг. Без его указания система работать не будет. Если у лягушки сначала разрушить командный пункт, находящийся в продолговатом мозгу, а потом ввести тромбин, кровь мгновенно свернется. Аварийная служба наготове, но некому дать сигнал тревоги.

Кроме перечисленных выше аварийных служб, кровь имеет еще и бригаду капитального ремонта. Когда кровеносная система повреждена, важно не только быстрое образование тромба, необходимо также его своевременное удаление. Пока порванный сосуд заткнут пробкой, она мешает заживлению раны. Ремонтная бригада, восстанавливая целостность тканей, понемножку растворяет и рассасывает тромб.

Многочисленные сторожевые, контрольные и аварийные службы надежно охраняют воды нашего внутреннего океана от всяких неожиданностей, обеспечивая очень высокую надежность движения его волн и неизменность их состава.



Гидравлика

Природа всегда стремится навязать любому органу дополнительные не свойственные ему функции. Как ни специфичны, ни ответственны задачи сердечно сосудистой системы, даже она не избежала этой участи, уж слишком заманчиво было использовать давление, существующее внутри кровеносной системы.

Известно, что гипертония (значительное повышение кровяного давления) очень опасна для организма, так как может вызвать разрушение системы, разрыв кровеносных сосудов. Однако именно это явление природа сумела сделать полезным. Жабовидная ящерица, обитающая в мексиканских пустынях, использует для своей личной обороны местную гипертонию в сосудах головы.

В общем то это не такое уж редкое явление в природе. Кровь, заполняя под большим, чем обычно, давлением гребни, шипы и иные выросты на голове и других частях тела, заставляет их увеличиваться в размерах, выпрямляться, менять окраску и тем самым придает животному страшный вид.

Жабовидные ящерицы этим не ограничились. Природа снабдила их удивительным приспособлением. В минуту опасности специальный мускул пережимает один из крупных кровеносных сосудов, что приводит к резкому повышению давления в кровеносных сосудах головы. При этом мелкие сосудики в мигательной перепонке глаз не выдерживают и лопаются, и кровь выбрызгивается прямо из глаз навстречу врагу. Неожиданный душ нередко обращает нападающего в бегство. Оружие действует в радиусе примерно полутора метров.

Другое назначение запирательного мускула – способствовать линьке. Рептилии растут почти всю жизнь. Жабовидные ящерицы каждый год меняют свою кожу. Освободиться от старой одежды бывает не легко. Вот тут то на помощь и приходит запирательный мускул. Когда давление в сосудах головы повысится, все кровеносные сосуды, большие и маленькие, переполняются кровью и голова раздувается до тех пор, пока старая кожа на ней не лопнет. Дальнейшая процедура не сложна. Ящерица выползает из своей шкуры через образовавшееся отверстие, как из ворота комбинезона.

Сердечно сосудистую систему использовать для дополнительных надобностей оказалось не очень удобно. Однако, изобретя насосы и сообщающиеся системы, природа решила заняться гидравликой всерьез. Прежде всего она, видимо, догадалась, что, нагнетая в полости и межтканевые пространства жидкость, можно значительно повысить тургор тканей, то есть придать им некоторую механическую прочность. Отсюда один шаг до создания гидростатического скелета.

Смешно сказать, но аналогичные конструкции начали использоваться человеком лишь в XX веке и до сих пор еще не получили достаточно широкого распространения. Особенно эффективно использование сжатого воздуха. Представьте себе колонну бульдозеров и вездеходов, пробившуюся сквозь тайгу к месту будущей стройки. В считанные часы расчищена площадка для поселка. Из машин выгружены не слишком громоздкие тюки, подключены насосные устройства, и через каких нибудь полчаса на месте только что сведенной тайги вырос поселок из двухэтажных парусиновых домов, в которых все балки и другие несущие конструкции надувные. Удобно, быстро, дешево и, как ни странно, надежно. К тому же парусиновые дома могут быть достаточно теплыми, если их стены сделать также надувными из 2–3 слоев прорезиненной парусины.

Животным гидростатический скелет тоже очень удобен. Главное его преимущество в том, что он может создаваться только на тот период, когда нужен. А исчезнет в нем потребность, давление в системе можно понизить, и от скелета не останется и следа. Правда, по надежности гидростатический скелет не выдержал конкуренции с костным, и там, где опоры должны быть постоянными, он уступил место более прочным сооружениям. Зато где постоянный скелет не нужен, преимущество осталось за гидравликой. Природа пронесла это изобретение через всю эволюцию животного царства от самых примитивных существ до человека включительно. Примером тому служат пещеристые тела, в которых в качестве рабочей жидкости используется кровь.

Еще интереснее гидродинамические устройства. Они могут быть совсем примитивными или достигать значительной степени сложности. К числу простейших конструкций относятся выводные сифоны двустворчатых моллюсков. Эти животные добывают кислород и пищу, мельчайшие кусочки органического вещества, из воды, засасываемой в мантийную полость. Обогащенная углекислым газом и загрязненная экскрементами вода уносится через специальный сифон наружу. Моллюск, безусловно, заинтересован, чтобы отходы выбрасывались подальше и не попадали обратно в мантийную полость. Поэтому выводной сифон бывает достаточно длинным. Однако он не имеет специальной мускулатуры, чтобы вытянуться как можно дальше. Когда раковина закрыта и движение воды в мантийной полости прекращается, сифон спадается. Зато как только ток жидкости возобновляется, сифон под ее воздействием распрямляется и вытягивается.

Гидродинамические устройства в конечностях пауков выполняют двигательную функцию. Сгибание конечностей у этих восьминогих существ, каждая лапка которых состоит из 6–7 члеников, происходит, как и у всех прочих животных, за счет сокращения специальных мышц, а разгибание – из за повышения давления внутри одетых в хитиновую броню конечностей.

Большое значение имеют гидродинамические устройства для рытья нор. Земляной червь при попытке вырыть норку во влажной почве (сухую червь увлажняет сам) максимально сокращает кольцевую мускулатуру своего переднего головного конца, превращая его почти что в острое шило, и ищет хоть малейшей щелки между частичками земли. Если это не удается, червь начинает забивать в землю передний конец, ударяя по нему изнутри глоткой, которая приводится в движение с помощью гидродинамического устройства. Повышение давления с 2 до 14 миллиметров водного столба позволяет наносить удар с силой 8,5 грамма. Внедрившись хоть немножко в почву, червь повышает давление в самой передней части тела, расширяя ее, а вместе с ней и проделанное отверстие. Многократно повторяя описанные выше движения, в не очень твердой почве червь прямо на глазах зарывается в землю. Еще энергичнее действуют сипункулиды, развивающие при рытье нор давление до 600 миллиметров водного столба.

К числу самых совершенных гидродинамических устройств относится двигательный аппарат иглокожих, который особенно хорошо развит у морских звезд и ежей, офиур и многих голотурий. Лучи морских звезд пронизаны симметрично расположенными лучевыми каналами, наполненными водянистой жидкостью. Веточки, отходящие от каналов, проникают в каждую из крохотных мускульных ножек, расположенных на нижней, ротовой стороне лучей. Во время движения жидкость нагнетается в ножки, которые при этом сильно набухают, вытягиваются вперед по направлению движения и с помощью присосок прикрепляются к грунту, после чего их мускулатура сокращается, выталкивая жидкость из каналов и немного подтягивая звезду вперед. Затем ножки отцепляются от субстрата, по которому ползет звезда, в них вновь нагнетается жидкость, и все повторяется сначала. Как видите, сердце не единственный насос, используемый природой для обеспечения важнейших жизненных функций организма многих животных.

Где достать дровишек?

Наша Земля, как и другие планеты солнечной системы, имеет очень неоднородный климат. Есть у нас такие заветные местечки в Антарктиде, где температура падает до −88 градусов, зато в Африке она нередко поднимается до +55, но это, конечно, крайности. Они наблюдаются в очень немногих районах земного шара. А в основном то климат более приветлив. Видимо, поэтому у большинства живых существ процессы жизнедеятельности возможны при температурах тела от 0 до 40 градусов. Достаточно широкий диапазон, и все таки для многих животных и растений он узок.

Есть водоросли, которые живут, размножаются и, по видимому, прекрасно себя чувствуют в горячих источниках с температурой 70–90 градусов. Среди вечных полярных льдов также существует жизнь. Это поразительное открытие почти двести лет назад сделала экспедиция полярного исследователя Сосюра. Впрочем, удивило ученых тогда другое. Экспедиция обнаружила районы, где лежал кроваво красный снег. Это зрелище даже у самых хладнокровных людей вызывало тревожное чувство.

Причина необычной окраски снега вскоре разъяснилась. Удалось установить, что виной тому микроскопические одноклеточные водоросли, покрывавшие его поверхность. Впоследствии эти водоросли, которым было присвоено название «хламидомонада снежная», находили в различных районах Арктики и Антарктики, в вечных снегах высочайших горных массивов, в том числе и у нас на Кавказе.

Сейчас ученым известно свыше 140 видов растений, постоянно живущих во льдах и снегах. Многие из них окрашены в фиолетовый, красный, коричневый или зеленый цвета и придают снегу соответствующую окраску.

Для того чтобы хламидомонада снежная успешно развивалась, нужно очень много солнечного света и достаточно холодная погода. Поэтому в больших количествах она встречается только в полярных районах и на горных вершинах. Исключительная холодостойкость снежных водорослей, вначале поразившая ученых, теперь никого особенно не удивляет. Гораздо интереснее их теплобоязнь. Хламидомонада снежная погибает от «жары» уже при температуре 4 градуса. Для нас с вами это очень холодно! Организмов с более сильной теплобоязнью, чем у хламидомонады, на Земле, видимо, нет.

Интересно, что один и тот же вид животных иногда может встречаться во всех климатических зонах: от полярных областей до экватора. У отдельных рас таких космополитов тепло– и холодоустойчивость бывают далеко не одинаковыми. Черви теребеллиды, живущие в Северном Ледовитом океане около Гренландии, гибнут от «жары» уже при температуре воды 6–7 градусов. Их южные собратья из Индийского океана легко переносят нагревание воды до 24 градусов.

Чемпионы среди теплолюбивых животных – рачки, живущие в очень теплых, слегка солоноватых озерах Аравийского полуострова. Они ужасно «мерзнут» уже при 35 градусах, а при дальнейшем понижении температуры гибнут от «холода».

Не все животные такие неженки. Обычно холод переносится легко. Споры и примитивные животные (коловратки и тихоходки) выживают при температуре, близкой к абсолютному нулю, то есть около −273 градуса. Даже такие высокоразвитые организмы, как насекомые, их яйца и куколки, могут переносить значительное охлаждение. Многие из них в наших северных условиях зимуют открыто, выдерживая тридцати пятидесятиградусные зимние холода. А в условиях лаборатории они переносили холод в −80–250 градусов.

Почему же, несмотря на большую тепло– и холодоустойчивость многих животных, их активная жизнедеятельность возможна лишь в относительно узком диапазоне?

Температура определяет скорость движения молекул любых веществ, в том числе и тех, из которых построено тело животных. Чем температура ниже, тем скорость движения молекул меньше, и, следовательно, тем медленнее идут химические реакции, пока их скорость не понизится настолько, что активная жизнедеятельность станет невозможной. Это происходит при температуре образования льда: основные химические реакции в организме идут в водных растворах.

Верхний предел переносимых температур зависит от устойчивости белков и жиров. Уже при нагревании выше 40 градусов они настолько изменяются, что клетки гибнут. Вот поэтому все животные стремятся к оптимальным для них температурным условиям. Достигают они этого по разному.

Как известно, на земле существуют пойкилотермные (холоднокровные) животные, температура тела которых зависит от температуры окружающей среды. В холодную погоду им приходится подчас прибегать к очень замысловатым способам, чтобы как то обогреться.

Высшие животные (гомойотермные, или теплокровные) изобрели универсальный способ поддержания температуры своего тела, специально вырабатывая тепло.

Впрочем, это делает любая клетка тела любого организма, если она активно участвует в обмене веществ. Такая клетка хоть на тысячную долю градуса всегда теплее окружающей ее среды. Поэтому не совсем верно утверждение школьных учебников, что температура тела у холоднокровных животных такая же, как в окружающей среде. Естественно, что маленькие животные и тепла вырабатывают мало и быстро отдают его в окружающую среду. Тут очень трудно заметить, что животное теплее среды. Зато у крупных и тепла вырабатывается больше и оно дольше сохраняется. Маленькая форель, живущая в прокладной воде горных ручьев, всего на 0,012 градуса теплее воды, а температура тела у крупного тунца или макайры значительно, не меньше чем на 6 градусов, выше температуры воды.

Для пойкилотермных животных самый простой способ согреться – подыскать для себя местечко с подходящим микроклиматом. Когда становится холодно, они прячутся в норах, ищут убежища на дне глубоких водоемов, а некоторые сами творят для себя микроклимат. На это способны даже растения. Известно, что в лесу климат мягче, чем на соседних полях.

Долгое время ученых мучила загадка: как удается снежным водорослям, о которых шла речь, поддерживать высокий уровень обмена веществ и интенсивно размножаться при низких температурах? Откуда они черпают для этого энергию? Таким свойством не обладают другие организмы на нашей планете.

Недавно выяснилось, что снежные водоросли сами создают для себя благоприятную обстановку. Они не разбросаны по снегу в одиночку, а живут крохотными колониями. В солнечную погоду темные скопления водорослей нагреваются, снег вокруг них подтаивает и каждая колония оказывается в миниатюрной ямке. Очень часто вода на поверхности замерзает, и ванночка с водорослями оказывается прикрытой сверху тонкой корочкой льда. Образуется маленький парничок, где может поддерживаться температура около нуля.

Однако не только повышение температуры до нуля градусов обеспечивает водоросли благоприятные условия существования. Ученые предполагают, что хламидомонады снабжены устройством, работающим аналогично полупроводниковым электрическим батареям. Для получения электрического тока необходимо, чтобы одна часть полупроводникового прибора была нагрета, а другая охлаждена. Чем значительнее будет отличаться их температура, тем больше будет получено электроэнергии.

У снежных водорослей происходит то же самое. Одна сторона нагрета солнцем, другая сильно охлаждается. Видимо, это и обеспечивает водоросли необходимой для их жизнедеятельности энергией.

Богатые урожаи снежных микроорганизмов не пропадают впустую. Раз есть корм, всегда найдутся и его потребители, даже в Антарктиде. Этот материк представляется нам огромной мертвой страной, покрытой километровыми толщами льда, где 10–11 месяцев в году свирепствуют жестокие морозы и снежные бури и лишь на 1–2 месяца жестокие холода сменяются более слабыми морозами. Мы привыкли думать, что немногие обитатели этого континента: тюлени, пингвины и несколько видов птиц живут вблизи океана, а весь остальной материк абсолютно безжизненный. Это не совсем верно. За годы изучения Антарктики ученые обнаружили в ее вечных снегах около 50 видов насекомых и других животных. Жизнь проникла далеко в глубь этого сурового материка.

Рекордсменом по дальности оказался крохотный паучок, которого нашли сотрудники английской экспедиции всего в 500 километрах от Южного полюса. Этот паучок живет в водорослевогрибных садиках. Если колонии водорослей расположены рядом, парнички сливаются, образуя целую систему подснежных оранжерей. В них то и поселяются паучки.

В оранжереях много корма, значительно теплее, чем на ветру, да и сам жилец одет в темную рубашку, которая на солнце неплохо прогревается. Когда же короткое полярное лето кончается, паучок впадает в спячку.

Лучистой энергией солнца пользуются и другие животные. Насекомые, обитающие в полярных областях и высокогорных районах, носят темную одежду, хорошо поглощающую тепловые лучи. Поэтому в солнечную погоду температура тела таких насекомых значительно выше температуры окружающего воздуха.

Другие животные научились регулировать количество получаемого тепла. Это очень важно, ведь в солнечные дни может возникнуть опасность перегревания. У многих земноводных и пресмыкающихся в коже есть специальные пигментные клетки, способные изменять свой размер. Когда пигментные клетки малы, цвет кожи остается светлым и она отражает солнечные лучи. При расширении пигментных клеток окраска кожи резко темнеет, значительно лучше поглощает солнечные лучи, и тело животного нагревается, но только до известного предела. При малейшем перегреве пигментные клетки вновь сжимаются, и дальнейшее нагревание прекращается.

Иначе поступает перламутровка. Этой бабочке необходимо, чтобы температура ее тела была 32,5–35,5 градуса. В солнечную погоду бабочка поддерживает такую температуру довольно точно, независимо от температуры воздуха. Основной тепловоспринимающей поверхностью ей служат крылья. Наиболее сильное нагревание происходит, когда крылья полностью раскрыты и направлены перпендикулярно к солнечным лучам. Чем меньше угол облучения, тем нагревание меньше. Терморегуляция у бабочек осуществляется благодаря изменению положения крыльев. Пока температура тела низка, крылья расположены так, чтобы происходило их максимальное нагревание. Когда температура тела достигает 35 градусов, бабочка начинает двигать крыльями и делает это до тех пор, пока не найдет такого положения, при котором дальнейшее нагревание прекратится.

Этим же принципом пользуются термиты при строительстве своих жилищ. Обычно вызывает удивление, почему живущие в земле и ведущие скрытый образ жизни насекомые сооружают такие заметные гнезда. Оказалось, что в земле им недостаточно тепло. Некоторые термиты, обитающие в особенно жарких странах, строят очень высокие, но плоские термитники, обращенные ребром на юг. В полдень, когда солнце особенно горячо, его лучи скользят по их постройке и перегрева не происходит, зато в остальное время дня, с восхода и до самого заката, солнечные лучи падают на боковые стенки, согревая гнездо.

Теплокровные животные обладают способностью сохранять постоянной температуру своего тела, не прибегая к помощи солнца. В холодную погоду они вырабатывают много тепла, а в жаркую умеют отдавать его излишки в окружающую среду. Впрочем, к повышению температуры животные нашей планеты приспособлены хуже, чем к холоду.

Мороз многие из них переносят легко. Разница между температурой тела и температурой окружающей среды может превышать 80 градусов, а животные будут поддерживать постоянство своей температуры. Особенно много подобных животных можно найти среди представителей арктической фауны. Например, температура тела белой куропатки равна 43 градусам; куропатка сохраняет ее и при сорокаградусном морозе.

Чтобы не замерзнуть, у теплокровных животных есть много приспособлений. Когда температура воздуха понижается, начинают действовать механизмы, усиливающие теплоизоляцию организма. В первую очередь сжимаются кожные сосуды, кожа становится холодной и меньше отдает тепла. Шерсть и перья встопорщиваются, между шерстинками становится больше воздуха, а ведь неподвижный воздух после вакуума самый лучший теплоизолятор. Кстати, эта милая привычка топорщить перья сохранилась и у человека. Когда мы мерзнем, у нас появляется гусиная кожа, причем остатки волос, те крохотные волоски, что еще сохранились на нашем теле, становятся дыбом. К сожалению, теплее нам от этого не бывает.

Если принятые меры не дали нужных результатов и охлаждение не прекратилось, возникает дрожь. Она совсем не бесполезна, как можно было бы думать. Мышечные сокращения сопровождаются выделением значительного количества тепла, поэтому с появлением дрожи значительно увеличивается теплопродукция.

Дрожать умеют только теплокровные животные, зато к работе мышц для увеличения производства тепла прибегают очень многие. Вот один из примеров. Как известно, рептилии не проявляют особого интереса к судьбе своего потомства. Исключений из этого правила очень немного. Об одном из них ученые знали уже давно. Самки некоторых видов крупных питонов, отложив яйца, не уползают прочь, а, обвившись кольцами вокруг них, несут караул до тех пор, пока не вылупятся змеята.

Конечно, на такого сторожа немногие рискнут напасть, слишком опасна наседка, но оказалось, что дело совсем не в этом. Самка питона охраняет свои яйца не столько от врагов, сколько от холода. Это может показаться неправдоподобным, ведь всем известно, что змеи животные хладнокровные. Однако такое представление не совсем верно. Если змея немного «побегает», то даже она может слегка согреться. Когда температура воздуха достаточно высока, питон лежит неподвижно, но как только станет холоднее, у него начинает работу поперечная мускулатура (при этом тело змеи то становится тонким, то опять утолщается). Питон трудится со всей силой, на которую способен (а силой он обладает не маленькой), пока не согреется сам и не согреет яйца. Вот какие удивительные бывают наседки.

Этот же способ используют насекомые. Они неспособны летать, пока не согреются. Бабочка ванесса в этом случае машет крыльями и даже в прохладную погоду, при температуре всего лишь в 10 градусов, за несколько минут умудряется согреться до 35, а во время полета ее температура достигает 37, совсем как у теплокровных.

При усиленной работе мышц выделяются значительные количества тепла, но одного дрожания теплокровным животным бывает недостаточно, и поэтому одновременно повышается обмен веществ, а следовательно, резко увеличивается химическая теплопродукция.

Пойкилотермные животные тоже иногда могут повышать свой обмен, но происходит это у них гораздо проще. Они начинают усиленно питаться, больше «сжигают» корма, создавая больше тепла. Самый разительный пример – пчелы. Каждая отдельная пчела, как и любое другое насекомое, не может поддерживать температуру своего тела. Но пчелиная семья, как целостный самостоятельный организм, теплокровна. Пчелы в отличие от остальных насекомых на зиму не засыпают. Брошенные в своих маленьких домиках на произвол снежных вьюг, они и в зимнюю стужу при −30 градусов остаются активными, а температура их «зимнего клуба» может в это время достигать +35.

«Клуб» создается с наступлением зимних холодов. Как только температура наружного воздуха понизится, пчелы собираются вокруг ползущей по сотам матки в большой плотный шар. Пчелы, находящиеся внутри, поближе к матке, усиленно питаются, «сжигая» много высококалорийного меда, и выделяют при этом массу тепла. Пчелы наружных слоев шара согреваются этим теплом и, сбившись в плотную массу, не дают остывать своим сестрам. Когда же мерзнуть им становится невмоготу, они расталкивают своих соплеменниц и пробираются внутрь, обнажая лежащий под ними пчелиный слой. В таком однообразном движении проводят они всю зиму, съедая за это время не один килограмм меда.

Особенно много тепла у пчел выделяют личинки. И не мудрено. Кормилицы кормят своих подопечных около 1300 раз в сутки. Однако в холодную погоду разбросанные по отдельным ячейкам личинки обогреть себя не в состоянии, и, чтобы расплод не погиб, а для его существования температура в гнезде должна равняться 35 градусам, рабочие пчелы плотным слоем собираются на сотах, собственными телами предохраняя личинок от холода. Если и этого недостаточно, наседки, тесно сгрудившись, начинают переминаться с ноги на ногу, взмахивают крыльями и дрожат, стараясь повысить температуру своих тел и спасти расплод.

Постоянную температуру пчелы поддерживают лишь в центре улья, где растет и развивается их потомство. На периферии она может быть значительно ниже. Но это ничего не значит. У теплокровных животных постоянной может быть тоже лишь температура в глубине организма. Температура кожи и особенно конечностей значительно ниже. В плавниках китов и тюленей, в конечностях горных козлов и северных оленей она может опускаться ниже 10 градусов. Интересно, что и при такой низкой температуре работоспособность мышц у этих животных не падает.

Вероятно, способность без вреда для здоровья переносить частичное охлаждение тела вырабатывается путем тренировки. Северяне даже в жестокие морозы не защищают кожу лица. Австралийские аборигены легко переносят охлаждение ног до 12–15 градусов. В холодные ночи они, как обычно, спят прямо на земле у слабо тлеющих костров, ничем не прикрывая свое тело от холода. При этом согревается лишь одна сторона тела, другая сторона и конечности остаются холодными. Европейцы, безусловно, так спать не могут. Мы обычно просыпаемся уже при очень незначительном понижении температуры нижних конечностей.

Охлаждение конечностей для водных животных – важная проблема. Тело китов и тюленей завернуто в толстый слой жира, в котором кровеносные сосуды развиты очень плохо. Через жир эти животные, обитающие обычно в очень холодной воде, почти не отдают тепло. Совсем другое дело плавники и ласты. Жиром они не защищены, а кровеносная система здесь развита очень сильно, ведь работающим мышцам необходим значительный приток крови. Горячая кровь, поступая в конечности, выносит через эти естественные прорехи большое количество тепла. Ластоногие не могли бы существовать, не будь у них одного замечательного приспособления.

Крупные артерии, по которым у китов и тюленей в плавники и ласты течет горячая кровь, оплетены густой сетью мелких вен, по которым охлажденная на периферии кровь возвращается обратно в сердце. Благодаря этому артериальная кровь, еще до того как попадет в мышцы, отдает венозной большую часть своего тепла и в дальнейшем почти не охлаждается, а нагретая венозная кровь возвращается в общее русло и не охлаждает организм. Удивительный теплообменник, сконструированный самой природой, позволяет крови, уходящей на периферию тела, оставлять весь излишек тепла на пороге жирового барьера. Аналогичные приспособления есть в подмышечных впадинах пингвина, которые препятствуют утечке тепла через его ласты.

Другой прорехой в теле теплокровных животных, через которую в организм проникает холод, служат легкие. Холодный воздух соприкасается там непосредственно с кровью. Внутренняя поверхность легких очень велика (у человека среднего роста она приблизительно равна 90 квадратным метрам, а это почти в 50 раз больше всей поверхности кожи), и можно было бы ожидать, что кровь в них сильно охладится и ее температура станет ниже температуры тела, что, в свою очередь, неизбежно вызовет охлаждение всего организма. Но этого не происходит. При высоких температурах окружающей среды температура оттекающей от легких крови становится ниже, чем притекающей, а на холоде, наоборот, выше. Правда, изменения очень незначительны, не более 0,03 градуса, но этого оказывается достаточно, чтобы зимой и летом поддерживать постоянную температуру тела.

Почему оттекающая от легких кровь в жаркую погоду оказывается охлажденной, понятно: тепло расходуется на испарение. Каким образом она в холодную погоду подогревается, удалось понять сравнительно недавно. О том, что воздух, проходя через дыхательные пути, еще в носовых пазухах, гортани, трахее и бронхах частично подогревается и смешивается с имеющимся в них теплым воздухом, благодаря чему происходит значительное сглаживание разности температур, знали давно. И все таки приходящий зимой в легкие воздух даже после этого остается значительно холоднее крови и должен ее охлаждать. Наблюдающийся же в действительности подогрев объясняется тем, что легкие у человека и теплокровных животных выполняют функцию теплопродукции, являясь одним из основных источников тепла в организме. В легочной ткани много высококалорийных жиров. В холодную погоду (только в холодную!) они «сгорают», выделяя большое количество тепла, и создают защитный тепловой барьер, препятствующий охлаждению организма. Таким образом, и эта прореха организма надежно прикрыта.

Человек охлаждается, испаряя воду в легких и с кожи. Многим животным охлаждаться сложнее. У грызунов нет потовых желез. Когда жарко, грызуны начинают учащенно дышать, все больше и больше испаряя из легких воды. Аналогичным образом охлаждают себя собаки и коровы.

Если учащение дыхания не спасает грызунов от перегревания, они начинают увлажнять свою шерстку слюной. Так же поступают опоссумы и австралийские сумчатые – жители жарких пустынь.

Пчелы используют и испарение и вентиляцию. Когда температура в улье угрожающе поднимается, одни из них разбрызгивают по сотам воду. В это время другие, выстроившись рядами у летка, усиленно машут крыльями, устраивая ураган внутри своего дома и ускоряя испарение.

Не легко охлаждаться водным животным. Хотя вода в 20–27 раз теплопроводнее воздуха, тело китов и тюленей одето в такое толстое одеяло из жира, что практически не охлаждается. Если бы не было специальных приспособлений, кит мог бы, видимо, закипеть, ведь при движении со скоростью 36 километров в час в его теле вырабатывается столько тепла, что каждые 5 минут температура должна была бы возрастать на 1 градус. Охлаждаются киты и тюлени благодаря сосудистым сплетениям кожи. Пока киту холодно, артерии, проходящие к коже через слой жира, сжаты и сплетения запустевают. Во время движения температура тела повышается, тогда горячая кровь выносится в кожу для охлаждения.

Существует и второй механизм. Усиленная работа мышц всегда приводит к повышению кровяного давления. Естественно, что при этом артерии, идущие в ласты, расширяются и пережимают тесно оплетающие их вены. Кровь из ласт начинает оттекать по ранее не функционировавшим венам, тем самым работа теплообменника нарушается и тепло через ласты отдается окружающей воде.

У китов есть еще один способ снизить температуру тела. Когда им жарко, они начинают прополаскивать рот и носовую полость холодной водой и выпускать подогретую в виде мощных фонтанов.

Если все таки энергичное противодействие организма не дало необходимого эффекта и температура тела продолжает повышаться, может наступить шок, который возникает вследствие теплового повреждения мозга. Интересно, что при согревании извне переносимая температура значительно ниже, чем при эндогенном (возникшем вследствие собственных процессов жизнедеятельности) повышении температуры тела. Человек теряет сознание, когда его температура под влиянием лучей солнца или теплого воздуха повышается всего лишь до 38,6 градуса, в то время как при очень интенсивной работе она без всяких вредных последствий может достигать 40, а при лихорадке, вызванной болезнетворными микроорганизмами, даже 42 градусов.

Строгое постоянство температуры тела, видимо, не всегда удобно. Во всяком случае, обитатели пустынь, то есть областей типично континентального климата, с резкими перепадами дневных и ночных температур, отступили от ортодоксальной теплокровности.

«Корабль пустыни» – верблюд, лучше других крупных теплокровных животных приспособившийся к жизни в песках, без всякого вреда переносит ежедневные колебания температуры тела, размах которых может достигать 5,5 градуса. Ночью, когда в пустыне холодно, его температура падает до 35 градусов. Это выгодно, он не расходует энергетические ресурсы на то, чтобы поднять ее выше. Днем повышается до 40,5. Верблюд не стремится ее снизить. Зато, если воздух хотя бы на полградуса градус прохладнее (а так чаще всего и бывает), верблюд легко отдает наружу избыток тепла, возникающий во время работы.

Чтобы точно поддерживать температуру тела, нужно иметь специальные приборы, а то может случиться беда. У примитивных организмов, которые еще не обзавелись термометрами, нередко происходят несчастные случаи.

Теплолюбивые микроорганизмы, обитающие в кучах торфа, совершенно не умеют соблюдать правила пожарной безопасности. Нередко они выделяют чрезмерно много тепла и так нагревают торф, что происходит его самовозгорание. Их собратья, поселяющиеся во влажных трюмах судов на кипах хлопка, льна или пеньки, такие же ротозеи, как и торфяные теплолюбы. Если их разведется слишком много, в море может возникнуть пожар.

У теплокровных животных за температурой крови (а значит, и за температурой тела) внимательно следит тепловой центр мозга и терморецепторы кожи. Природа редко бросает на полпути интересные находки. Тепловая рецепция у некоторых животных получила такое развитие, что стала важнейшим приспособлением для изыскания пищевых объектов.

Особенно виртуозно пользуются терморецепцией хладнокровные животные. Им это легче, чем теплокровным, у которых высокая температура тела маскирует и мешает улавливать слабые тепловые воздействия, идущие издалека. Чувствительные терморецепторы есть у многих насекомых: пчел, комаров, клопов, сверчков, клещей, а также у гадюк, удавов, гремучих змей и у других рептилий. У насекомых они чаще располагаются в антеннах для восприятия температурных сигналов, идущих издалека, или в лапках – для определения температуры почвы. Благодаря тому, что антенн две, насекомые могут очень точно определять источник тепла. Получив тепловой сигнал о присутствии жертвы, комар будет до тех пор изменять положение тела, пока обе крохотные трехмиллиметровые антенны не станут получать одинаковое количество тепла.

Наведение на цель очень точное и чувствительное. Инженеры конструкторы ракет перехватчиков, самонаводящихся на теплые объекты, ракеты или работающие моторы самолетов, пока не могут соперничать с насекомыми в чувствительности своих приборов.

Крупные кровососущие клопы легко обнаруживают источник тепла даже с помощью одной антенны. Повертев ею в разные стороны, клоп без труда замечает, что, когда она вытянута, например, вправо, то нагревается быстрее, так как оказывается ближе к источнику тепла, и уверенно ползет вправо.

Температура кожи у различных людей далеко не одинакова, поэтому одни из нас больше привлекают кровососущих насекомых, другие меньше. Кому приходилось прогуливаться вблизи водоемов теплыми комариными вечерами, когда тучи ненасытных кровопийц не дают и шагу шагнуть, вероятно, не раз случалось удивляться стойкости рыболовов любителей, способных простоять на берегу всю ночь.

А дело не только в стойкости. Кожа человека, разгоряченного ходьбой и интенсивной борьбой с комарами, значительно теплее, чем у спокойно стоящего на берегу человека, и привлекает комаров значительно больше. Поэтому то рыболовов комары «едят» значительно меньше, чем прогуливающихся.

У рептилий парные органы для восприятия тепла располагаются на морде, немного ниже глаз, иногда на нижней губе. Устройство их не сложно. В глубине ямки находится тонюсенькая мембрана всего в 15 микрон толщиной со множеством свободных нервных окончаний, а под мембраной – воздушная полость, которая препятствует потерям и без того ничтожного количества тепла на нагревание окружающих тканей. Мембрана может улавливать изменения температуры в 0,002 градуса, которые создаются при расходе всего 0,000 000 005 калории в секунду.

Благодаря этому змея на довольно большом расстоянии различает предметы, температуры которых отличаются от окружающих предметов всего на 0,1 градуса. Ясно, что при такой тонкой чувствительности змея в полной темноте безошибочно направится к сидящей где нибудь под кустом «горячей» мышке или чуть теплой лягушке.

Термочувствительные органы теплокровных устроены проще. Мегаподы – сорные куры Австралии и Новой Гвинеи выводят птенцов в специально сооружаемых инкубаторах, больших кучах гниющего мусора, где высокая температура поддерживается за счет гниения. Уход за инкубаторами у сорных кур поручается мужской половине, как существам, безусловно, технически более грамотным, чем легкомысленные несушки. Такое распределение функций вполне оправдано, клюв у петухов является прекрасным термометром. Опустив его поглубже в мусор, птица точно определяет температуру. Если она выше 33 градусов, приходится разгребать кучу, чтобы ее охладить; если ниже, добавить топлива – новую порцию гниющего мусора.

Устройство термометра несложно. Клюв сам имеет температуру 33 градуса. Петуху остается лишь понять, в какую сторону отличается температура кучи. Это уже не трудно и доступно даже человеку.




1   2   3   4   5   6   7   8   9   ...   14


База данных защищена авторским правом ©ekollog.ru 2017
обратиться к администрации

войти | регистрация
    Главная страница


загрузить материал