Экосистемы средних пустынь казахстана и их инвентаризация методами дистанционного зондирования 03. 00. 16 экология



страница1/5
Дата26.04.2016
Размер1.03 Mb.
ТипАвтореферат
  1   2   3   4   5


На правах рукописи

Бедарева Ольга Михайловна

ЭКОСИСТЕМЫ СРЕДНИХ ПУСТЫНЬ КАЗАХСТАНА И ИХ ИНВЕНТАРИЗАЦИЯ МЕТОДАМИ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ

03.00.16 – экология


АВТОРЕФЕРАТ

диссертации на соискание учёной степени

доктора биологических наук

Калининград

2009
Работа выполнена в Федеральном государственном образовательном

учреждении высшего профессионального образования

«Калининградский государственный технический университет»


Научные консультанты: академик Национальной Академии Наук

Республики Казахстан,

доктор биологически наук

Байтулин Иса Омарович

профессор, доктор сельскохозяйственных наук



Хлюстов Виталий Константинович


Официальные оппоненты: академик Российской Академии Наук,

доктор биологических наук



Коропачинский Игорь Юрьевич

профессор, доктор сельскохозяйственных наук



Любимов Александр Владимирович

профессор, доктор сельскохозяйственных наук



Панасин Владимир Ильич

Ведущая организация: Федеральное государственное образовательное

учреждение высшего профессионального

образования Санкт-Петербургский

государственный аграрный университет


Защита состоится «_10_»_апреля_2009 года в 16.00 часов на заседании диссертационного совета Д 212.084.04 при Российском государственном университете им. И. Канта по адресу: 236040, Калининград, ул. Университетская, д. 2, факультет биоэкологи, аудитория 143, тел. (4012) 53-37-07; (4012) 53-37-75.
С диссертацией можно ознакомиться в библиотеке Российского государственного университета им. И. Канта.

Факс: (4012) 53-37-07; (4012) 53-37-75; 8(4012) 91-68-46


Автореферат разослан «____»___________2009 г.

Ученый секретарь диссертационного совета, И.Ю. Губарева

кандидат биологических наук, доцент

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Роль природных кормовых угодий (ПКУ), как естественного ресурса, остаётся незаменимой, и это относится, прежде всего, к пастбищам аридных и экстрааридных зон Казахстана.

Возрастающие масштабы хозяйственного воздействия на пастбищные экосистемы пустынных регионов требуют все большего внимания к проблеме сохранения их продуктивности, так как естественные кормовые угодья являются решающими для создания прочной кормовой базы.

Среди различных антропогенных факторов, вызывающих нарушение почвенного и растительного покровов пустынных регионов, ведущими являются вырубка древесной и кустарниковой растительности, выпас и сенокошение. Уничтожение деревьев и кустарников можно оценивать как первый шаг к деградации пастбищных экосистем. Многие растения древесного яруса - эдификаторы, средообразователи, определяющие существование других видов растений. В пустынях Казахстана сплошная и очаговая вырубка саксаула черного вызвала выпадение из травянистого и кустарничкового ярусов многих видов растений, что привело к снижению биологического разнообразия черносаксауловых пастбищных экосистем.

Недостаточная устойчивость пустынных комплексов, особенно под воздействием антропогенных факторов, обусловливает необходимость систематического или периодического наблюдения за состоянием пустынных пастбищных угодий, получения оперативной информации о направлении и масштабах изменений, происходящих в них. На современном техническом уровне проблема получения информации решается применением дистанционных методов, позволяющих оперативно получать достаточно полный объем сведений о состоянии пустынных экосистем на обширной территории.

Применение аэрокосмических методов, при инвентаризации растительности пустынных зон, в значительной степени связано с труднодоступностью этих территорий. Аэрокосмические снимки, обладая значительной обзорностью и информативностью, позволяют объективно оценить обстановку и принять эффективные меры, направленные на сохранение природных кормовых угодий и их рациональное использование.

Цель и задачи исследований. Основная цель работы заключается в разработке методологии использования средств дистанционной индикации для анализа продуктивности пастбищной растительности, степени её антропогенной трансформации и картографирования.

При выполнении работы поставлены и решены следующие задачи:



  • Выявлена взаимосвязь между урожайностью и спектральными коэффициентами яркости (СКЯ) доминирующих ассоциаций и их эдификаторов песчаного массива Мойынкум; построены переводные кривые учёта надземной фитомассы.

  • По материалам крупномасштабной аэрофотосъёмки установлены признаки дешифрирования ассоциаций саксаула черного; осуществлено аналитико-измерительное дешифрирование таксационных показателей доминантов пастбищных угодий; оценена достоверность полученных результатов.

  • Выявлены закономерности изменения показателей продуктивности саксаула чёрного в зависимости от возраста, линейных параметров роста и других таксационных показателей.

  • Построены статистические модели возрастной динамики роста, строения и продуктивности саксаула черного и терескена.

  • Осуществлена комплексная оценка методов дистанционного зондирования при инвентаризации пустынно-пастбищной растительности.

  • Разработаны качественные и количественные критерии антропогенной трансформации пастбищных экосистем

  • Сформулированы предложения к положению аэрокосмической службы слежения за состоянием пастбищных угодий.

Научная новизна. Впервые на большом объеме экспериментального материала проведена комплексная оценка методов дистанционного зондирования, использованных при инвентаризации пустынно-пастбищной растительности.

Создана региональная база данных взаимосвязи динамики урожайности доминирующих ассоциаций пустынь Сарыесик-Атырау и Мойынкум со спектральными коэффициентами яркости. Предложен метод дифференциации урожайности древесного, кустарникового и травянистого ярусов пустынных пастбищных угодий на основании данных аэрофотометрирования и крупномасштабной аэрофотосъёмки.

При разработке комплексной технологии лесоустройства пустынных лесхозов методами дистанционного зондирования в качестве экспериментальной основы использован метод полигонов.

Впервые для пустынных лесхозов в результате камерального дешифрирования космических снимков на площади 12 млн га проведена оценка дигрессионных процессов. На примере Уштобинского лесхоза рассмотрена динамика пастбищной дигрессии за более чем десятилетний период.

Изучено современное состояния растительного покрова подзоны средних пустынь и разработаны мероприятия его рационального природопользования и охраны.

В работе обоснованы перспективы использования многоступенчатого мониторинга пустынных пастбищных угодий. Впервые на землях гослесфонда республики Казахстан (Аккольский и Каройский опытные полигоны) апробирована аэрокосмическая служба слежения за состоянием пустынных пастбищ.



Положения, выносимые на защиту:

- Обоснованы оптимальные сроки определения урожайности пустынных пастбищных экосистем аэрофотометрическим методом на основании корреляционных взаимосвязей между спектральных коэффициентов яркости и надземной фитомассой.

- Выявлена эффективность метода аналитико-измерительного и визуального дешифрирования крупномасштабных снимков в определении таксационных показателей пустынно- пастбищной растительности. Достоверность результатов подтверждается данными контактных исследований.

- Проанализирована динамика дигрессионных процессов пустынно-пастбищной растительности по материалам повторных космических съемок с использованием качественных и количественных показателей нарушенности растительного покрова.

- Оценка экологического состояния и антропогенной трансформации пустынных пастбищных экосистем с применением специальных критериев, включающих природную динамику и новые технологии дистанционного зондирования.



Практическая значимость.

При лесоустройстве пустынных лесхозов внедрена технология инвентаризации древесной и кустарниковой растительности методами дистанционного зондирования.

На основании многофакторной классификации опытного материала получены достоверные статистические модели продуктивности саксаула чёрного (общая, товарная, поедаемая фитомассы); таблицы нормативов по общей и поедаемой фитомассе саксаула черного и терескена серого в зависимости от различных таксационных показателей. Эти таблицы могут быть использованы при наземных таксационных работах в процессе лесоустройства и при камеральном измерительном дешифрировании крупномасштабных аэроснимков.

Выявлены количественные и качественные критерии нарушенности растительных сообществ в результате антропогенного воздействия. На основании космических снимков, с использованием материалов тематического картографирования и наземных исследований, получена серия оценочных карт песчаных массивов Сарыесик-Атырау и Мойынкум: антропогенной трансформации, интенсивности использования пастбищных угодий, кормовых угодий, карт лесов.

Полученные результаты используются при чтении курсов лекций на факультете биоресурсов и природопользования КГТУ «Фитоценология», «Агроэкология», «Кормопроизводство».

Апробация работы. Основные результаты доложены на международных и всероссийских конференциях, съездах, включая международную научно-практическую конференцию «Аграрная наука на рубеже веков» (Акмала, 1997); международную научно-практическую конференцию «Перспективы развития животноводства в Северо-западном регионе» (Калининград, 2001); международные научные конференции «Инновации в науке и образовании» (Калининград, 2003, 2005, 2006); международную научную конференцию «Ботаническая наука на службе устойчивого развития стран Центральной Азии» (Алматы, 2003); 4-ый съезд Докучаевского общества почвоведов «Почвы - национальное достояние России» (Новосибирск, 2004); международную научную конференцию «Состояние и перспективы развития почвоведения» (Алматы, 2005); международную научно-практическую конференцию «Вузовская наука сельскому хозяйству» (Барнаул, 2005); всероссийскую конференцию «Природная и антропогенная динамика экосистем» (Иркутск, 2005); всероссийскую конференцию «Экспериментальная информация в почвоведении: теории и пути стандартизации» (Москва, 2005); международную научно-практическую конференцию «Аграрная наука - сельскому хозяйству» (Барнаул, 2006, 2008); международную научно-практическую конференцию «Сельское хозяйство - проблемы и перспективы» (Гродно, 2006); 4-ую международную научную конференцию «Проблемы сохранения и рационального использования биоразнообразия Прикаспия и сопредельных регионов» (Элиста, 2006), международную научно-практическую конференцию «Экологические проблемы отраслей народного хозяйства» (Пенза, 2006), международную научную конференцию «Пространственно-временная организация почвенного покрова: теоретические и прикладные аспекты» (Санкт-Петербург, 2007); всероссийскую научно-практическую конференцию «Фундаментальные достижения в почвоведении, экологии, сельском хозяйстве на пути к инновациям» (Москва, 2008); международную конференцию, посвященную 450-летию Астрахани «Эколого-биологические проблемы бассейна Каспийского моря и водоемов внутреннего стока Евразии» (Астрахань, 2008).

Личное участие автора. В основу диссертационной работы положены результаты многолетних (1984-1998 г.г.; 2003, 2004г.) детально-маршрутных и стационарных исследований автора в подзоне Средних пустынь Казахстана (Сарыесик-Атырау, Мойынкум). Приведённые в диссертации фактические данные, их анализ и обобщение, а также картографические материалы выполнены при личном участии автора.

Работа выполнялась в Казахском лесоустроительном предприятии по научно-исследовательской программе Государственного Комитета СССР по лесу Всесоюзного объединения «Леспроект» 01.08.Н/д: «Разработать технологию аэрокосмической оценки кормовых ресурсов пустынных и полупустынных пастбищ на землях Государственного лесного фонда Казахстана».

Дальнейшая работа входила в план научных исследований в рамках х/договорных тем кафедры физической географии Казахского национального университета (КазНУ) (06.03.110), выполненных совместно с кафедрой геохимии ландшафтов и географии почв МГУ им. М.В. Ломоносова. Кроме того, привлечены материалы, собранные при выполнении госбюджетных тем на кафедре ботаники КазНУ (305.01.602) и кафедрах агрономии, агропочвоведения и агроэкологии ФГОУ ВПО «КГТУ».

Публикации.

По теме диссертации опубликовано 56 работ, в том числе 2 монографии (с соавторами), 9 статей в изданиях, рекомендованных ВАК РФ, 41 статья в научных журналах, сборниках и материалах конференций, 4 учебно-методических пособия.



Структура и объем работы. Диссертация состоит из введения, 10 глав, выводов, изложена на 370 страницах компьютерного текста, включает список литературы 377 наименований, в том числе 70 на иностранных языках, 59 таблиц, 74 рисунка, 18 приложений.

Благодарности. Автор выражает искреннюю благодарность научным консультантам: академику НАН РК Исе Омаровичу Байтулину за внимание и исключительную помощь на всех этапах моей научной работы - подготовке кандидатской и докторской диссертаций, профессору Виталию Константиновичу Хлюстову за консультации, дискуссии, помощь при выполнении отдельных разделов экспериментальной работы. Я благодарна коллегам: проф. Паракшиной Э.М., проф. Паракшину Ю.П., Мурачевой Л.С., Троян Т.Н., Юсову А.И., Романенковой С.А., Заостровцевой С.К., Ковальчук О.А.
1. ПРИРОДНЫЕ УСЛОВИЯ ПУСТЫНЬ КАЗАХСТАНА
Совершенно очевидно, что характер пустынных пастбищ тесно связан с природными условиями различных типов пустынь и обусловливается ими, поэтому их необходимо учитывать.

Территория пустынь Южного Казахстана относится к континентальным засушливым областям умеренных широт (умеренной, теплой подзоны) (Иванов,1956).Общей особенностью существования растительности в пустынной зоне является значительная сухость климата при высокой теплообеспеченности. Однако в пределах такой обширной территории климатические условия, прежде всего гидротермические, заметно изменяются с севера на юг и с запада на восток. Наиболее важным широтным климатическим рубежом является граница между северными (холодно-умеренными) и южными (теплоумеренными) пустынями (Евстифеев, Рачковская,1991). В связи с этим зональный тип пустынь подразделяется на 3 климатически обусловленных типа: северных, средних и южных пустынь.

В работе приведены результаты исследований, проведенных в основном в подзоне средних пустынь Казахстана - пустыня Сарыесик-Атырау, песчаный массив Мойынкум, часть сведений касается казахстанской части Кызылкумов – южная подзона, кроме того работы по исследованию саксаульников проведены в некоторых частях подзоны северных пустынь.

2.СОСТОЯНИЕ ВОПРОСА

В главе представлен аналитический обзор методов дистанционного зондирования при оценке состояния и продуктивности растительного покрова, картографировании.

Внимание уделено проблеме изучения спектральной отражательной способности растительных сообществ и почв, а также факторам, влияющим на отражательные характеристики системы в целом. Рассмотрен прикладной аспект проблемы использования отражательной способности почв и растительного покрова для решения целого ряда задач (Тихомиров, 1951; Козлова, 1955; Рачкулик, Ситникова, 1966, 1981, 1986; Федченко,1982; Кондратьев, Федченко, 1982,1982а, 1982б; Hoffer, Bauer, 1980; Weiser, Asrar, Miller et al., 1986; Виноградова,1984; Кондратьев, Козодеров, Федченко и др. 1986, 1990; Николаев, Шутова, 1982; Сухих,1984; Николаев, 1986, 1986а; Бедарев, Лебедь и др.,1986; Eidenschinc, 1992; Loveland, Mepchant, et al.,1991; Belvard, 1995).

Проанализирован опыт дешифрирования аэро- и космических снимков, акцентировано внимание на их достоинствах: повторности, обзорности и возможностью получения сведений об отдельных объектах. Космические снимки, как никакие другие виды съемки, дают интегральные геоизображения всех компонентов геосистем, позволяющие увидеть их взаимодействие и связи (Виноградов, 1966; Востокова, Сущеня, Шевченко, 1988; Данюлис, Жирин, Сухих, Эльман,1989; Кравцова, 1992, 2005; Книжников, Кравцова, Тутубалина, 2004; Лабутина, 2004; Де Мерс, 1999; Берлянт, 2000, 2006; Бугаевский, Цветков, 2000; Сухих, 2005).

Методы цифровой обработки снимков описаны в работах целого ряда авторов (J.R.Jensen,1996; Бугаевский, Малинников, Савиных, 1998; Мусин, 1998; Лурье, Косиков, 2003). В последние годы стали широко использоваться системы позиционирования, дающие возможность получать координаты с точностью от нескольких метров до нескольких миллиметров (Герасимов, Ефимов, 1999; Трофимова, 2000).

Одним из основных источников данных для ГИС являются материалы дистанционного зондирования. Они объединяют все типы данных, получаемых с носителей космического и авиационного базирования, и составляют значительную часть дистанционных данных как антонима контактных и обеспечивают объединение картографического и аэрокосмического методов (Берлянт, 1985; Котова, Латышева, Январева, 1998; Январева, 2000).

Спектр разработки новых карт и других геоизображений, существующих в цифровой среде или порождаемых ею, чрезвычайно широк и речь уже идет об электронных картах и атласах (Polydorides, 1993; Hadden, 1994; Ormeling, 1995; Buscema,1996; Ambroise, Govaert, 1996; Дьяконов, Касимов, Тикунов, 1996; Blayo,1997; Жуков и др.,1999; Bogomolov, Rylskiy, Tikunov, 2002; Книжников, Лурье, 2002). Виртуальное моделирование одно из новых направлений внедрения геоинформационных технологий (Bryson, 1996; Dibiase, 1990; MacEachern et al., 1997; Moelliring, 1984; Riedal, 1999). Виртуальные геоизображения сочетают свойства карт, космических снимков, блок-диаграмм и компьютерных аннимаций (Берлянт, 2001; 2006).

Следует отметить особую роль серий карт и комплексных атласов, где сведения приводятся в единообразной, систематизированной, взаимно согласованной форме. Такие наборы карт особенно удобны для создания тематических баз данных (Салишев, 1976; Атлас космических снимков…, 1982; Ormeling, 1995; Evteev et al., 1997; Cartrwright, 1997; Cheng, 1997; Daniel, Oberholzer, 1997; Тикунов, Цапук,1999; Bidoshi, 1999; Берлянт, Семин, Сорокина, 2000; Джексон, 2001; Львов, 2001; Берлянт, Вилков и др., 2005).

Для прогнозирования в ландшафтной экологии наибольшее значение имеют методы учитывающие динамику пространственных неоднородностей, например, операции с марковскими цепями, метод кригинга (Matheron, 1963; Ripley, 1981; Alfeld, 1989; Sadovnichiy, 1997; Виноградов, Кошель, Кулик, 2000; Замятин, Марков, 2007).

Реализованные или реализуемые в настоящее время отраслевые проекты (земельный кадастр, лесное хозяйство и др.) подробно рассмотрены в книге Е.Г. Капралова, А.В. Кошкарева, В.С. Тикунова (2004). Формируются региональные информационные комплексы, реализация которых осуществляется на основе развития единой технологии: от создания новой техники на базе малых платформ с оптико-электронными съемочными системами высокого разрешения до систем сбора и обработки информации (Шайтура, 1998; Савиных, Цветков, 1999; Состояние и ближайшие перспективы…, 2000; Бруни, Вознесенский, Воробьев, Лебедев и др., 2002)



3. ОБЪЕКТЫ И МЕТОДИКА ИССЛЕДОВАНИЙ
Поскольку в данной работе структура и динамика экосистем рассматривается через призму растительности, как основного компонента, являющегося объектом детальных исследований, термин «экосистема» трактуется в более узком смысле, как ценоэкосистема в понимании Б.А. Быкова (1983).

Пустынный тип растительности понимается как объединение растительных сообществ с доминированием гиперксерофильных, ксерофильных микро- и мезотермных растений различных жизненных форм, преимущественно полукустарников, полукустарничков, кустарников и полудеревьев (Рачковская, 1993, 1995). При описании растительного покрова использована карта растительности Казахстана и Средней Азии (1995), где растительные сообщества пустынь сгруппированы по совокупности структурно-физиономических и экологических признаков в эколого-физиономические категории.

Выбор пустынных территорий определен как научной, так и производственной целесообразностью: объекты научных исследований по инвентаризации древесной и кустарниковой растительности на основе аэрокосмической съемки в Мойынкуме совмещены (территориально) с производственными объектами (Мойынкумский лесхоз), исследования в Сарыесик-Атырау послужили основой для практических рекомендаций в Баканасском лесхозе. Территория объекта (Мойынкумы) в исследовательских и производственных целях покрыта выборочной крупномасштабной (КМ) аэрофотосъемкой М 1:1500. Размещение фотопроб по территории произведено по принципу систематической выборки с выделением тестовых участков, эталонирующих различные пастбищные угодья.

В Сарыесик-Атырау использован метод полигонов (Аккольский и Каройский полигоны – 10х10км) и ландшафтно-экологических рядов для целей типологии и динамики пастбищной растительности. Использование тестовых полигонов вполне оправдано, так как с одной стороны они отражают разнообразие зонально-подзональных типов растительности, а с другой – многообразие хозяйственной деятельности и различную степень нагрузки.

Узловые моменты методики включают три основных этапа: подготовительный, полевые (натурные) исследования, камеральный.

Подготовительные работы заключались в подборе объектов, исходя из принципа обеспечения ими наиболее полной представленности природных комплексов и, в частности, растительности характерной для Средних пустынь Казахстана. В подготовительный период входило изучение документов по инвентаризации пустынных растительных объектов и, прежде всего: подбор космоснимков М 1:100000 и 1:300000, проведение крупномасштабной аэрофотосъемки (фотопробы М 1:1500), закладка таксационно-дешифровочных пробных площадей (ТДПП).

Цель натурных исследований (геоботанических, лесотаксационных, почвенных и др.) - сбор информации для изучения возможностей определения дистанционными методами видового состава и структуры растительных сообществ, таксационных характеристик видов, оценки продуктивности пастбищных угодий и их состояния, наличия дигрессионых процессов.

Для натурных исследований производилась подготовка крупномасштабных аэроснимков: привязка их к мелкомасштабным фотоматериалам, фиксирование на них ТДПП, контурное дешифрирование.

Данные натурных исследований, проведенных на тестовых участках, положены в основу изучения дешифровочных признаков. Для оценки урожайности применен фотометрический метод в комплексе с дешифрированием крупномасштабных аэрофотоснимков (Бедарева, 2005).

Третий этап - камеральные работы - заключался в выполнении цикла работ, направленных на изучение дешифровочных признаков для индикации пустынных пастбищных угодий, оформления картографических материалов (разных уровней). Аналитико-измерительное дешифрирование таксационных показателей производилось с использованием стереоскопов СЭС, ОДSS и Мs27. Измерение линейных величин, а также показателей проективного покрытия выполнено с помощью шкал и палеток. Визуальное дешифрирование проективного покрытия проведено методом эталонирования.

Проведена классификация опытного материала с применением факторного и дискриминантного анализов, кластеризацией экспериментальных данных с применением стратегий ближайшего соседа и Уорда. Таким образом, при изучении растительности пустынных экосистем использованы как традиционные методы геоботанических, ботанико-географических, флористических, лесотаксационных исследований, так и новые методы дистанционного зондирования. Использование современных приборов при полевых исследованиях (GPS) и компьютерного оборудования при обработке данных позволило получить информацию на качественно новом уровне, с точной территориальной привязкой в виде разнообразных графических моделей и баз данных (Бедарева, Хлюстов, Бедарев, 2006).
4. СПЕКТРАЛЬНЫЕ ХАРАКТЕРИСТИКИ ЭДИФИКАТОРОВ ПАСТБИЩНЫХ УГОДИЙ

4.1. Вегетационные индексы

Учет надземной фитомассы естественных кормовых угодий представляет одну из сложных задач в пастбищном хозяйстве, поскольку с ним связано одновременное методически правильное решение многих вопросов (выбор участка, количество выделенных учетных делянок, их размер, репрезентативность самого участка, техника учета).

Традиционный укосный метод получил широкое распространение на геоботанических стационарах и при маршрутных обследованиях. Несмотря на то, что этот метод широко используется повсеместно, он имеет определенные субъективные ошибки (Бедарев, Бедарева,1987; Бедарева, 2001).

Для количественной оценки почвенно-растительных объектов разработан фотометрический (бесконтактный) метод, который основан на существовании взаимосвязи между отражательными свойствами системы почва-растительность и параметрами растительного покрова (Рачкулик, Ситникова,1986). Но, имея дело с той или иной растительной ассоциацией, сообществом или типом пастбища, необходимо учитывать сложность биоэкологической системы, спектральные характеристики которой не остаются статичными, а могут изменяться в зависимости от географического положения, флористического состава, фенологического состояния эдификаторов, структурно-функциональных особенностей, величины надземной фитомассы.

Изучение отражательной способности пустынно-пастбищной растительности было начато на опытных полигонах в Сарыесик-Атырау с целью методического освоения, наработки опытных данных, создания первичной базы взаимосвязи спектральных коэффициента яркости (СКЯ) и урожайности доминирующих ассоциаций массива (Байтулин, Бедарев, Бедарева, 1987; Лагунов, Бедарева, Успенский, Бессчетнов, 1988; Бедарева, 1988, 1990, 1990а; Лагунов, Успенский, Бедарева, 1990).

Дальнейшие исследования в этом направлении базировались не только на научном интересе сравнения региональных особенностей отражательной способности пустынно-пастбищной растительности Сарыесик-Атырау и Мойынкумов, но и внедрении фотометрического метода в производство для оперативной оценки урожайности на обширных территориях. Кроме того задачи лесоустройства пустынных лесхозов требовали разнообразной аналитической информации по черносаксауловым и белосаксауловым сообществам. Исследование вегетационных индексов в Мойынкумах проводилось на тестовых участках, отражающих разнообразие и специфику растительности песчаного массива.

С целью сокращения демонстрационного материала приведу пример наблюдений осуществленных в одной из ассоциаций. В дальнейшем проводились выборочные проверки полученных переводных кривых на соответствующих тестовых участках, обновление базы данных.

В подзоне средних пустынь в частности в Южном Прибалхашье и песчаном массиве Моыйнкум серии белосаксауловых сообществ встречаются в сочетании с псаммофитнонокустарниковыми сообществами. В Мойынкуме они занимают северную и центральные части массива. Для пустыни Мойынкум характерен центрально-северотурансий географический элемент серий белосаксуловых сообществ в сочетании с сериями псаммофитнокустарниковых, более того здесь на их долю приходится 30% территории. Псаммофитнокустарниково-белосаксауловая ассоциация (Agropyron fragile-Astragalus brachypus + Calligonum aphyllum - Haloxylon persicum) приурочена к бугристо-грядовым пескам. Доминантами данной ассоциации являются: саксаул белый, астрагал коротконогий, джузгун (табл. 1).

В растительном покрове отмечается три, иногда четыре яруса. Первый ярус слагается из саксаула белого достигающего высоты от 1,0 до 2,5 м, астрагал коротконогий и джузгун располагаются во втором, третий ярус - терескен и многолетние травы.

Фотометрирование кустарников в третьей декаде мая проводилось на фоне цветущих и плодоносящих эфемеров, поэтому аспект этого периода характеризуется красочностью и разнообразием. Среди вегетирующих кустарников выделяются желтые пятна цветущего крестовника, зеленые пятна полыни джунгарской.

Были изучены вегетационные индексы кустарников - саксаула белого, джузгуна, из полукустарников - астрагала коротконогого.

Для каждого вида кустарников и полукустарников были построены отдельные переводные кривые.

Распределение спектральных характеристик для майского периода выглядит таким образом: саксаул белый - 1,19-1,70; джузгун - 1,21-2,22; астрагал – 1,17-1,79; эфемеры -1,17-1,26. (рис. 1)
Таблица 1

Флористический состав псаммофтитнокустарниково-белосаксауловой ассоциации



№ п/п

Название растений

Фенологическая фаза

Обилие по шкале Друде

Фенологическая фаза

Обилие по шкале Друде

Фенологическая фаза

Обилие по шкале Друде

Фенологическая фаза

Обилие по шкале Друде

1

2

3

4

5

6

7

8

9

10







май

июнь

июль

август

Кустарники и кустарнички

1.

Haloxylon persicum Bge.

цв.

cop2

пл.

cop2

вег.

cop2

вег.

cop2

2.

Ammodendron bifolim (Pall) Kuntze.

вег.

cop1

цв.

cop1

пл.

cop1

пл.

cop1

3

Calligonum aphyllum (Pall) Guerke

бут.

cop1

цв.

cop1

пл.

cop1

пл.

cop1

Полукустарники и полукустарнички

4.

Kracheninnikovia ceratoides (L.) C. C. Gueldenst.

вег.

cop1

вег.

cop1

цв.

cop1

пл.

cop1

5.

Astragalus brachypus Schrenk.

цв.

cop1

цв., пл.

cop1

вег.

cop1

вег.

cop1

6.

Artemisia songarica Schrenk.

вег.

sp

цв.

sp

выг.

sp







7.

Artemisia terrae albae Krasch.

вег.

sp

бут.

sp

бут.

sp

цв.

sp

Монокарпические и поликарпические травы

8.

Astragalus sphaerophysa Kar. Et Kir.

вег.

sp

цв.,пл.

sp

пл.

sp







9.

Artemisia santolina Schrenk.

вег.

sp

вег.

sp

цв.

sp

пл.

cop1

10.

Agropyron fragile (Roth) Nevski.

вег.

sp

цв.

sp

пл.

sp

пл.

sp

11.

Heliotropium arguzioides Kar. Et Kir.

вег.

sol

цв

sol

пл.

sol







12.

Carex prysodes M. B.

пл.

sol

выг.

sol













13.

Senecio subdentatus Ledeb.

цв.

sol

пл.

sol

выг.

sol







14.

Eremostachis affinis Schrenk.

вег.

sol

цв.

sol

выг.

sol







15.

Centaurea pulchella Ledeb.

бут.

sol

цв.

sol

выг.

sol







16.

Lapulla occulata M. Pop.

цв.

sol

выг.

sol

выг.

sol







17.

Aristida pennata Trin.

вег.

sol

цв.

sol

пл.

sol







18.

Euphorbia rapulum Kar. Et Kir.

вег.

sol

вег.

sol













Окончание табл.1

1

2

3

4

5

6

7

8

9

10

19.

Eremopyrum orientalis (L.) Jaub.et Spach.

цв.

sol

пл.

sol

выг.

sol







20.

Alyssum desertorum Stapf.

цв.

sol

пл., выг.

sol

выг.

sol







21.

Silene olgiana B. Fedtsch.

цв.

sol

цв.

sol

выг.

sol







22.

Delphinium rugulosum Boiss.

цв.

sol

цв.

sol

пл.

sol







23.

Meniocus linifolius (Steph.) DC.

цв.

sol

цв.,пл.

sol

выг.

sol







24.

Bromus tectorum L.

цв.

sol

пл.

sol

выг.

sol







25.

Alhagi pseudalhagi (M.B.) Desv.

вег.

sol

цв.

sol

пл.

sol






Сравним полученные данные с результатами фотометрирования эфемерово-кустарниковой ассоциации в Сарыесик-Атырау; белый саксаул - 1,17-1,66; астрагал - 1,19-1,60; эфемеры - 1.18-1,27 (Бедарев, Бедарева, Тулеубаев,1993) В целом результаты несущественно отличаются по двум исследуемым регионам. В третьей декаде мая сформированы не только вегетативные органы кустарников и полукустарников ассоциации, но и генеративные, например саксаул и астрагал коротконогий цвели. Облиственность кустарников и полукустарников практически достигла максимума, хотя в силу архитектоники кроны саксаула (ее сквозистости), вклад почвы в систему почва-растительный покров будет вполне определенным.

В первой декаде июня джузгун, астрагал, саксаул характеризуются плотным расположением вегетирующей массы, что приводит к исключению экранирующего влияния почвы и повышению минимальных значений спектрального отклика. Спектральные характеристики джузгуна изменяются в пределах от 1,39 до 2,6; СКЯ астрагала несколько ниже - 1,38-1,67; СКЯ саксаула 1,20-1,70 (рис. 2) .

Сравним результаты июньского периода с данными по Сарыесик-Атырау: саксаул белый -1,38-1,78; астрагал - 1,20-1,70. Интервалы вегетационных индексов от минимума до максимума имеют несущественные различия.

В первой-второй декадах июля многие кустарники и полукустарники плодоносят и теряют часть вегетирующей массы. Спектральные характеристики снижаются и принимают следующие значения: для джузгуна - 1,18-1,81; для астрагала 1,15-1,79 для саксаула 1,08-1,60. Установленная взаимосвязь урожайности и спектральных коэффициентов сохраняется, хотя коэффициенты детерминации объективно ниже, за исключением джузгуна (R2═0,647).

В августе аспект приобретает серые оттенки, контрастность между почвой и растительностью снижается и только зелеными пятнами выделяются кусты однолетних солянок. Установленная взаимосвязь параметров даже для позднелетнего периода наблюдений в псаммофитнокустарниково-белосаксауловой ассоциации сохраняется.

Полученные в наземных условиях связи использованы нами для оценки состояния почвенно-растительных объектов при аэрофотометрировании (Бедарев, Бедарева и др., 1992). По результатам наземных фотометрических наблюдений получена нормативная таблица взаимосвязи урожайности со спектральными коэффициентами яркости для подзоны Средних пустынь.

Рис. 1. Взаимосвязь урожайности (сухой массы) псаммофитнокустарниково-белосаксауловой ассоциации со спектральным коэффициентом яркости (Кпр) по календарным срокам наблюдений (3 декада мая)

Рис. 2. Взаимосвязь урожайности (сухой массы) псаммофитнокустарниково-белосаксауловой ассоциации со спектральным коэффициентом яркости (Кпр) по календарным срокам наблюдений (1декада июня)

Таблица 2



Поделитесь с Вашими друзьями:
  1   2   3   4   5


База данных защищена авторским правом ©ekollog.ru 2017
обратиться к администрации

войти | регистрация
    Главная страница


загрузить материал