II. Основные законы экологии и учение о биосфере



страница2/22
Дата23.04.2016
Размер4.82 Mb.
1   2   3   4   5   6   7   8   9   ...   22

Первая группа организмов  продуценты или автотрофные организмы, т.е. "сами являющиеся пищей". В качестве питательного материала они используют простые неорганические вещества: воду, СО2, нитраты и фосфаты. В качестве энергетического материала продуценты используют солнечный свет либо энергию химических реакций. Они подразделяются на фото- и хемоавтотрофы.

Фотоавтотрофы используют в качестве источника энергии солнечный свет, а в качестве питательного материала  в основном углекислый газ и воду. К этой группе организмов относятся все зеленые растения и некоторые бактерии. В процессе жизнедеятельности они синтезируют на свету органические вещества  углеводы или сахара (СН2О)n ,которыми питаются животные:

Фотосинтез: nСО2 + nН2О = (СН2О)n + nО2

Хемоавтотрофы используют энергию, выделяющуюся при химических реакциях. К этой группе принадлежат, например, нитрифицирующие бактерии, окисляющие аммиак до азотистой и затем азотной кислоты:

Хемосинтез: 2NH3 + 3O2 = 2HNO2 + 2H2O + Q

2HNO2 + O2 = 2HNO3 + Q

Химическая энергия (Q), выделенная при этих реакциях, используется бактериями для синтеза органических веществ.

Главная роль в создании органических веществ принадлежит зеленым растительным организмам. Роль хемосинтезирующих бактерий в этом процессе относительно невелика. Каждый год фотосинтезирующими организмами на Земле создается около 150 млрд. т органического вещества, аккумулирующего солнечную энергию.



Вторая группа организмов  консументы, или гетеротрофные организмы, т.е. "питающиеся другими". Они используют в качестве источника энергии и питательного материала готовое органическое вещество, осуществляя процесс разложения органических веществ. Их делят на фаготрофы и сапротрофы.

Фаготрофы питаются непосредственно растительными или животными организмами. К ним относятся в основном крупные животные  макроконсументы.

Сапротрофы используют для питания органические вещества мертвых остатков. К этой группе относятся как мелкие организмы (муравьи, черви и др.), так и крупные животные (гиены, шакалы, вороны и др.)

Третью группу организмов составляют редуценты или деструкторы, участвующие в последней стадии разрушения, т.е. в минерализации органических веществ, которые они восстанавливают до неорганических соединений (С, Н2, О2, N2, P и др.). Они очищают природную среду от отходов, возвращают вещества в кругооборот, превращая их в формы, доступные для продуцентов, таким образом возобновляя жизненный цикл.

К редуцентам относятся главным образом микроскопические организмы (бактерии, грибы и др.)  микроконсументы. Их выделяют в отдельную группу потому, что роль редуцентов в круговороте веществ чрезвычайно велика. Без них в биосфере накапливались бы груды органических остатков, иссякли бы запасы минеральных веществ, необходимых продуцентам, и жизнь в той форме, которую мы знаем, прекратилась бы.



9. Саморегуляция и стабильность экосистем, гомеостаз. Устойчивость экосистем.

2.2.5.Саморегуляция и стабильность экосистем. Гомеостаз

Относительно стабильное соотношение скоростей автотрофных и гетеротрофных процессов на Земле существует благодаря способности экосистем и биосферы к саморегуляции.

Саморегуляция (управление) основана на обратных связях, когда часть сигналов с выхода из системы вновь поступает на вход, регулируя состояние системы на выходе.

Обратные информационные связи необходимы для сохранения равновесия в экосистемах и бывают положительными и отрицательными.

Положительная обратная связь является как бы "саморазгоняющейся". Она усиливает однонаправленные изменения в системе дополнительной информацией, поступающей с выхода системы на вход. Например, избыточное поступление биогенных элементов в водоем увеличивает питательную базу, что вызывает в виде реакции рост популяций водных организмов и растительности, способных ее поглотить.

Отрицательная обратная связь  это поток информации в систему, противодействующий изменениям внешних условий. Она помогает избегать перегрева организма, перепроизводства продукции, перенаселения и т.д. Управление экосистемой любого порядка осуществляется на основе информации положительных и отрицательных обратных связей с помощью гомеостаза  регулятора состояния биосистем. Увеличение количества выпадающих осадков при сохранении радиационного (теплового) баланса экосистемы приводит к выработке нового равновесного состояния в конкретном биоценозе. Например, к увеличению площади водного зеркала озера. В случае уменьшения увлажнения территории мы будем наблюдать аридную трансгрессию, т.е. опустынивание, либо наступление степей на лесостепь и так до наступления равновесия. При достаточно длительном изменении природных условий наступит реакция также в растительном и животном мире, пока не будут заняты возникшие экологические ниши или, наоборот, удалены "лишние" особи, популяции вслед за исчезновением ранее существовавших экологических ниш.

Таким образом, гомеостаз  это способность популяции экосистемы самостоятельно поддерживать устойчивое динамическое равновесие при неразрушающих изменениях условий среды обитания с помощью обратных связей. Следовательно, экосистемы способны самостоятельно поддерживать относительную стабильность своего состояния.

2.2.6. Устойчивость экосистем

Стабильность в экологии означает свойство любой системы возвращаться в исходное состояние после того, как она была выведена из состояния равновесия. Стабильность определяется устойчивостью экосистем к внешним воздействиям. Выделяют два типа устойчивости: резистентную и упругую.

1.Резистентная устойчивость  это способность экосистемы сопротивляться нарушениям, поддерживая неизменными свою структуру и функции.

2.Упругая устойчивость  способность системы быстро восстанавливаться после нарушения структуры и функций.

Экосистеме трудно совмещать оба типа устойчивости: они связаны обратной связью, а иногда исключают друг друга. Например, калифорнийский лес из секвойи устойчив к пожарам (высокая резистентная устойчивость), но если он сгорит, то восстанавливается очень медленно или вовсе не восстанавливается (низкая упругая устойчивость). А заросли вереска очень легко выгорают (низкая резистентная устойчивость), но быстро восстанавливаются (высокая упругая устойчивость).

10. Экологические факторы, оптимум и пессимум жизнедеятельности. Экологическая пластичность, стено- и эврибионтность организмов. Лимитирующие факторы, законы минимума Ю.Либиха и толерантности В.Шелфорда.

Экологическая пластичность

Несмотря на большое разнообразие экологических факторов, в характере их воздействия и в ответных реакциях жи­вых организмов можно выявить ряд общих закономерностей.

Эффект влияния факторов зависит не только от характера их действия (качества), но и от количественного значения, восприни­маемого организмами: высокая или низкая температура; степень освещенности, влажности; количество пищи и т.д. В процессе эволюции выработалась способность организмов адаптироваться к экологическим факторам в определенных количественных пределах. Уменьшение или увеличение значения фактора за этими предела­ми угнетает жизнедеятельность, а при достижении некоторого мини­мального или максимального уровня наступает гибель организмов.

Любые виды организмов, популяций или сообществ приспособ­лены, например, к существованию в определенном интервале температур.

Свойство организмов адаптироваться к существованию в том или ином диапазоне экологического фактора назы­вается экологической пластичностью.

Чем шире диапазон экологического фактора, в пределах которого данный организм может жить, тем больше его экологи­ческая пластичность. По степени пластичности выделяют два типа организмов: стенобионтные (стеноэки) и эврибионтные (эвриэки).

Стенобионтные и эврибионтные организмы различаются диапазоном экологического фактора, в котором они могут жить.

Стенобионтные (гр. stenos - узкий, тесный), или узкоприспособленные виды способны существовать лишь при небольших отклонени­ях фактора от оптимального значения.

Эврибионтными (гр. eurys - широкий) называются широкоприспособленные организмы, выдерживающие большую амплитуду колеба­ний экологического фактора. Таким образом, стенобионты экологически непластичны, т.е. маловыносливы, а эврибионты экологически пластичны, т. е. более выносливы. К первым относятся, например, типичные обитатели морей, которые живут в условиях высокой солености (камбала), и типичные обитатели пресных вод (карась). Они обладают невысокой экологической пластичностью. А вот трехиглая колюш­ка, может жить как в пресных, так и в соленых водах, т.е. характеризуется высокой пластичностью

Организмы, живущие длительное время в относительно ста­бильных условиях, утрачивают экологическую пластичность, а те, которые были подвержены значительным колебаниям фактора, становятся более выносливыми к нему, их экологическая пластич­ность увеличивается.

Для обозначения отношения организмов к конкретному фак­тору к его названию прибавляют слова стено- или эври-. Так, по отношению к температуре бывают стенотермные (карликовая береза, банановое дерево) и эвритермные (растения умеренно­го пояса) виды; по отношению к солености - стеногалинные (карась, камбала) и эвригалинные (колюшка); по отношению к свету - стенофотные (ель) и эврифотные (шиповник) и т.д.

Стено- или эврибионтность проявляются по отношению к од­ному или немногим факторам. Так, эвритермное растение мо­жет быть стеногигробионтным (невыносливым к колебаниям влаж­ности), а стеногалинная рыба оказывается эвритермной и т.п.

Эврибионты обычно широко распространены. Стенобионты имеют ограниченный ареал распространения.

Исторически, приспосабливаясь к экологическим факторам, животные, растения, микроорганизмы распределяются по раз­личным средам, формируя все многообразие экосистем, обра­зующих биосферу Земли.

Лимитирующие факторы

Представление о лимитирующих факторах основывается на двух законах экологии: законе минимума и законе толерантности.

Закон минимума. В середине прошлого века немецкий химик Ю. Либих (1840), изучая влияние питательных веществ на рост растений, обнаружил, что урожай зависит не от тех эле­ментов питания, которые требуются в больших количествах и присутствуют в изобилии (например, СО2 и Н2О), а от тех, которые, хотя и нужны растению в меньших количествах, но практически отсутствуют в почве или недоступны (например, фосфор, цинк, бор). Эту закономерность Либих сформулиро­вал так: «Рост растения зависит от того элемента питания, который присутствует в минимальном количестве». Позднее этот вывод стал известен как закон минимума Либиха и был распространен на многие другие экологические факторы. Ог­раничивать, или лимитировать развитие организмов могут и теп­ло, и свет, и вода, и кислород, и другие факторы, если их значение соответствует экологическому минимуму. Например, тропическая рыба морской ангел погибает, если температура воды опустится ниже 16°С. А развитие водорослей в глубоко­водных экосистемах лимитируется глубиной проникновения сол­нечного света: в придонных слоях водорослей нет.

Закон минимума Либиха в общем виде можно сформу­лировать так: рост и развитие организмов зависят, в пер­вую очередь, от тех факторов природной среды, значе­ние которых приближается к экологическому минимуму.

Первое ограничение состоит в том, что закон Либиха строго применим лишь в условиях стационарного состояния системы.

Второе ограничение связано с взаимодействием нескольких факторов.

Закон толерантности (лат. tolerantia - терпение) был открыт английским биологом В. Шелфордом (1913), который обратил внимание на то, что ограничивать развитие живых организмов могут не только те экологические факторы, значения которых минимальны, но и те, которые характеризуются экологическим максимумом. Избыток тепла, света, воды и даже питательных веществ может оказаться столь же губительным, как и их недо­статок. Диапазон экологического фактора между минимумом и максимумом В. Шелфорд назвал пределом толерантности.

Законы Ю. Либиха и В. Шелфорда помогли понять многие явления и распределение организмов в природе. Орга­низмы не могут быть распространены повсюду потому, что попу­ляции имеют определенный предел толерантности по отношению к колебаниям экологических факторов окружающей среды.

Закон толерантности В. Шелфорда формулируется так: рост и развитие организмов зависят, в первую оче­редь, от тех факторов среды, значения которых при­ближаются к экологическому минимуму или экологи­ческому максимуму.

Было установлено следующее:


  • организмы с широким диапазоном толерантности ко всем факторам широко распространены в природе и часто бывают космополитами, например, многие патогенные бактерии;

  • организмы могут иметь широкий диапазон толерантности в отношении одного фактора и узкий диапазон относительно другого. Например, люди более выносливы к отсутствию пищи, чем к отсутствию воды, т. е. предел толерантности относительно воды более узкий, чем относительно пищи;

  • если условия по одному из экологических факторов становятся неоптимальными, то может измениться и предел толерантности по другим факторам. Например, при недостатке азота в почве злакам требуется гораздо больше воды;

  • наблюдаемые в природе реальные пределы толерантности меньше потенциальных возможностей организма адаптироваться к данному фактору. Это объясняется тем, что в природе пределы толерантности по отношению к физическим условиям среды могут сужаться биотическими отношениями: конкуренция, отсутствие опылителей, хищники и др. Любой человек лучше реализует свои потенциальные возможности в благоприятных условиях (сборы спортсменов для специальных тренировок перед ответственными соревнованиями, например). Потенциальная экологическая пластичность организма, определенная в лабораторных условиях, больше реализованных возможностей в естественных условиях. Соответственно различают потенциальную и реализованную экологические ниши;

- пределы толерантности у размножающихся особей и потом­ства меньше, чем у взрослых особей, т.е. самки в период размножения и их потомство менее выносливы, чем взрослые организмы. Так, географическое распределение промысловых птиц чаще определяется влиянием климата на яйца и птенцов, а не на взрослых птиц. Забота о потомстве и бережное отношение к материнству продиктованы законами природы. К сожалению, иногда социальные «достижения» противоречат этим законам;

- экстремальные (стрессовые) значения одного из факторов ведут к снижению предела толерантности по другим факторам. Если в реку сбрасывается нагретая вода, то рыбы и другие орга­низмы тратят почти всю свою энергию на преодоление стресса. Им не хватает энергии на добывание пищи, защиту от хищников, раз­множение, что приводит к постепенному вымиранию. Психологи­ческий стресс также может вызывать многие соматические (гр. soma -тело) заболевания не только у человека, но и у некоторых животных (например, у собак). При стрессовых значениях фактора адапта­ция к нему становится все более и более «дорогостоящей».

Многие организмы способны менять толерантность к отдельным факторам, если условия меняются постепенно. Можно, например, привыкнуть к высокой температуре воды в ванне, если залезть в теплую воду, а потом постепенно добавлять горячую. Такая адапта­ция к медленному изменению фактора - полезное защитное свой­ство. Но оно может оказаться и опасным. Неожиданное, без предупреждающих сигналов, даже небольшое изменение может оказаться критическим. Наступает пороговый эффект: «после­дняя капля» может оказаться фатальной. Например, тонкая веточка может привести к перелому уже перегруженной спины верблюда. Если значение хотя бы одного из экологических факто­ров приближается к минимуму или максимуму, существо­вание и процветание организма, популяции или сообще­ства становится зависимым именно от этого, лимитирую­щего жизнедеятельность фактора.

Лимитирующим фактором называется любой экологичес­кий фактор, приближающийся к крайним значениям пределов толерантности или превышающий их. Такие сильно отклоняющие­ся от оптимума факторы приобретают первостепенное значение в жизни организмов и биологических систем. Именно они контроли­руют условия существования.

Ценность концепции лимитирующих факторов состоит в том, что она позволяет разобраться в сложных взаимосвя­зях в экосистемах.

К счастью, не все возможные экологические факторы регули­руют взаимоотношения между средой, организмами и челове­ком. Приоритетными в тот или иной отрезок времени оказывают­ся различные лимитирующие факторы. На этих факторах эко­лог и должен сосредоточить свое внимание при изучении экоси­стем и управлении ими. Например, содержание кислорода в наземных местообитаниях велико, и он настолько доступен, что практически никогда не служит лимитирующим фактором (за исключением больших высот и антропогенных систем). Кислород мало интересует экологов, занимающихся наземными экосисте­мами. А в воде он нередко является фактором, лимитирующим развитие живых организмов («заморы» рыб, например). Поэтому гидробиолог всегда измеряет содержание кислорода в воде, в отличие от ветеринара или орнитолога, хотя для наземных орга­низмов кислород не менее важен, чем для водных.

Лимитирующие факторы определяют и географический аре­ал вида. Так, продвижение организмов на север лимитируется, как правило, недостатком тепла. Биотические факторы также часто ограничивают распространение тех или иных организмов. Например, завезенный из Средиземноморья в Калифорнию ин­жир не плодоносил там до тех пор, пока не догадались завезти туда и определенный вид осы - единственного опылителя этого растения. Выявление лимитирующих факторов очень важно для многих видов деятельности, особенно сельского хозяйства. При целенаправленном воздействии на лимитирующие условия можно быстро и эффективно повышать урожайность растений и произ­водительность животных. Так, при разведении пшеницы на кислых почвах никакие агрономические мероприятия не дадут эффекта, если не применять известкование, которое снизит ограничи­вающее действие кислот. Или, если выращивать кукурузу на почвах с очень низким содержанием фосфора, то даже при достаточном количестве воды, азота, калия и других питательных веществ она перестает расти. Фосфор в данном случае - лими­тирующий фактор. И только фосфорные удобрения могут спа­сти урожай. Растения могут погибнуть и от слишком большого количества воды или избытка удобрений, которые в данном слу­чае тоже являются лимитирующими факторами.

Знание лимитирующих факторов дает ключ к управле­нию экосистемами. Однако в разные периоды жизни организма и в разных ситуациях в качестве лимитирующих выступают различ­ные факторы. Поэтому только умелое регулирование условий су­ществования может дать эффективные результаты управления.



11. Круговороты веществ в биосфере. Большой (геологический) и малый (биологический) круговороты, их основа и энергетика. Главные компоненты круговоротов в гидросфере, атмосфере и литосфере, степень замкнутости и техногенное влияние на их балансовые характеристики.

3.3.2. Глобальный круговорот веществ в биосфере.

Солнечная энергия обеспечивает на Земле два круговорота веществ: большой, или геологический (абиотический) и малый, или биологический (биотический).

Большой круговорот наиболее четко проявляется в циркуляции воздушных масс и воды. В основе большого (геологического) круговорота лежит процесс переноса веществ, в основном минеральных соединений, из одного места в другое в масштабе планеты.

Около 30% падающей на Землю солнечной энергии расходуется на перемещение воздуха, испарение воды, выветривание горных пород, растворение минералов и т.п. Движение воды и ветра, в свою очередь, приводит к эрозии почв и горных пород, транспорту, перераспределению, осаждению и накоплению механических и химических осадков на суше и в океане. В течение длительного времени образующиеся морские отложения могут возвращаться на поверхность суши, и процессы возобновляются. К этим циклам подключаются вулканическая деятельность, землетрясения и движение океанических плит в земной коре.

Круговорот воды, включающий ее переход из жидкого в газообразное и твердое состояния и обратно, - один из главных компонентов абиотической циркуляции веществ. В процессе гидрологического цикла происходят значительное перераспределение и существенная очистка планетарных запасов воды. При этом следует отметить, что наибольшей скоростью обновления обладают наиболее важные для существования живой среды суши – пресные воды. Период их оборота составляет в среднем около 11 суток.

Малый круговорот. На базе большого геологического круговорота возникает круговорот органических веществ, или малый, биологический (биотический) круговорот. В 1927 г. советский ученый В. Р. Вильямс писал: «Из большого, абиотического, круговорота веществ на земном шаре вырывается ряд элементов, которые, постоянно увлекаемые в новый, малый, по сравнению с большим, биологический круговорот, надолго, если не навсегда, вырываются из большого круговорота и вращаются непрерывно расширяющейся спиралью в одном направлении в малом, биологическом, круговороте».

В основе малого круговорота веществ лежат процессы синтеза и разрушения органических соединений. Эти два процесса обеспечивают жизнь и составляют одну из главных ее особенностей.

В отличие от геологического, биологический круговорот характеризуется ничтожным количеством энергии. На создание органического вещества, как уже упоминалось, затрачивается всего около 1% падающей на Землю лучистой энергии. Однако эта энергия, вовлеченная в биологический круговорот, совершает огромную работу по созиданию живого вещества. Чтобы жизнь продолжала существовать, химические элементы должны постоянно циркулировать из внешней среды в живые организмы и обратно, переходя из протоплазмы одних организмов в усвояемую форму для других.

Все абиотические и биотические планетарные циркуляции веществ тесно переплетены и образуют глобальный системно существующий круговорот, с перераспределением энергии Солнца, с отсутствием противоречий между его отдельными ветвями и практически с нулевым вещественным балансом.

В круговороте элементов различают две части: резервный (недоступный) фонд - большая небиологическая часть медленно движущихся веществ и обменный (доступный) фонд - меньшая, но более подвижная часть, которая быстро обменивается между организмами и окружающей их средой. Биогеохимические циклы делятся на два типа: газообразные циклы с резервным фондом малоподвижного химического элемента в атмосфере и гидросфере и осадочные циклы с резервным фондом в земной коре. Главными биогеохимическими циклами, обеспечивающими жизнь на планете (кроме круговорота воды), являются циркуляции углерода, кислорода, азота, фосфора, серы и других биогенных макроэлементов.

Круговорот углерода. У углерода самый интенсивный круговорот из всех биохимических циклов биосферы. Это основной строительный материал молекул органических соединений (углеводов, жиров, белков, нуклеиновых кислот и др.). Растения получают его, поглощая СО2 из атмосферы. Сейчас запасы углерода в атмосфере в виде СО2 относительно невелики в сравнении с его запасами в океанах и земной коре (в виде ископаемого топлива, известняков и др.). Но твердые формы углерода (резервный фонд) продуценты усваивать не могут. Поэтому в постоянном круговороте участвует лишь 0,2% мобильного за­паса углерода. Скорость его обновления в биомассе 12 лет, а в атмосфе­ре – 8 [ ]. Круговорот углерода формируется в основном углекислым газом СО2 и незначительно оксидом углерода СО и метаном СН4.

Биотическая циркуляция углерода в биосфере основана на потреблении СО2 из атмосферы и его поступлении в атмосферу.

Углекислый газ из воздуха используется главным образом:

1) в процессе фотосинтеза СО2 + Н2О  СН2О + О2;


  1. в реакциях его с карбонатами океане СО2 + Н2О +СаСО3  Са(НСО3)2;

  2. при выветривании горных пород Fе2S3 + 6СО2 + 6Н2О 
    2Fе(НСО3)3 + ЗН2S.

Поступление углекислого газа в атмосферу происходит в результате:

  1. дыхания всех организмов;

  2. минерализации органических веществ;

  3. выделения по трещинам земной коры из осадочных пород (имеют также биогенное происхождение);

  4. выделения из мантии Земли при вулканических извержениях (незначительная часть - до 0,01%);

  5. сжигания древесины и топлива.

Круговорот кислорода. В значительной степени это антипод круговорота углекислого газа. Движение веществ одного происходит в направлении противоположном движению другого. Выработка O2 связана с реакцией фотосинтеза, тогда как выделение СО2 с дыханием. Общее потребление атмосферного кислорода и его возмещение пер­вичными продуцентами происходит сравнительно быстро. Так, для полного обновления всего атмосферного кислорода требуется 2000 лет. В наше время фотосинтез и дыхание в природных условиях, без учета деятельности человека, с большой точностью уравновешива­ют друг друга. В связи с этим накопления кислорода в атмосфере не происходит, и его содержание (20,946%) остается постоянным.

Роль кислорода в биосфере сложная, так как с ним в реакцию вступает большое количество органических и неорганических веществ. В результате возникает множество циклов от микроорганизмов до биосферы, происходящих между гидросферой, литосферой и атмосферой, между экосистемами данных сред, а также и внутри экосистем. Помимо обеспечения процессов жизнедеятельности кислород благодаря производному озону (O3), слой которого сформировался в стратосфере под действием ультрафиолетовой (УФ) радиации, осуществляет защиту живой природы от губительного жесткого УФ-излучения (λ < 280 нм).

Именно с появлением озона в атмосфере планеты (около 500÷600 млн. лет назад) связывается выход жизни из океана на сушу. До этого же момента большая часть кислорода, вырабатываемого в течение длительного гео­логического времени (около 3,0 млрд. лет), не оставалась в атмосфере, а фиксировалась литосферой в виде карбонатов, сульфатов, окислов железа и т.п. Это полностью исключало образование озона, а также способствовало его накоплению в литосфере, где масса кислорода в 15 раз превышает циркулирующий в биосфере O2 в виде газа или сульфатов, ра­створенных в континентальных и океанических водах.

Влияние антропогенной деятельности на снижение содержания кислорода в биосфере определяется теми же процессами, которые способствуют росту содержания оксидов углерода. В подтверждение этого достаточно привести лишь один пример – только автомобильным парком США сжигается кислорода в 2 раза больше, чем вырабатывается собственной природой. Учитывая остальные потребности в кислороде, несложно понять размер «экологического долга» американцев только по этой «статье», а также назревающую остроту экологических проблем в промышленно развитых регионах планеты.

Круговорот азота. По общему объему составляет 1/65 от круговорота углерода и используется лишь 1/40 часть его резервного фонда. Крупнейшим резервуаром молекулярного азота N2 является атмосфера. Все живые организмы нуждаются в азоте, который используют в различных формах для образования белков и нуклеиновых кислот. Но лишь немногие микроорганизмы – азотофиксаторы могут использовать газообразный N2 из атмосферы. Однако, в процессе круговорота он преобразовывается в растворимые и усвояемые растениями ионы аммония NН4+ (аммонификация), нитрит- и нитрат-ионы NО2- и NО3- (нитрификация), что и способствует повышению его использования. Сложность круговорота азота заключается в том, что он включает газовую и минеральную фазы, а также абиотическую и биотическую части.

Антропогенное влияние на круговорот азота является разноплановым.

Антропогенная денитрификация (превращение избыточных нитритов и нитратов в газообразный N2) и стремление к сокращению производства нитратных удобрений соответствуют природным процессам поступления потока N2 в атмосферу, компенсируя тем самым его антропогенную фиксацию из атмосферы в сельском хозяйстве и промышленности. ?

В последнее время содержание N2 в атмосфере не менялось. Можно думать, что поступление его в атмосферу (денитрификация) и отток из атмосферы (азотфиксация) уравновешены, хотя фиксация слегка преобладает вследствие деятельности человека. ?

Следовательно, хотя человек и влияет как на потребление N2, так и на поступление его в атмосферу, эти потоки в целом сбалансированы и не меняют его концентрацию в воздухе, в отличие от потоков СО2. ?

Круговорот фосфора. Круговорот фосфора в биосфере свя­зан с процессами обмена веществ в растениях и животных. Этот важный и необходимый элемент протоплазмы, содержа­щийся в наземных растениях и водорослях (0,01÷0,1%) и у живот­ных (от 0,1 % до нескольких процентов), циркулирует, постепенно переходя из органических соединений в фосфаты, которые сно­ва могут использоваться растениями (рис. ).

Однако фосфор в отличие от других биофильных элементов в процессе миграции не образует газовой формы. Резервуаром фос­фора является не атмосфера, как у азота, а минеральная часть литосферы.

Ресурсы неорганического фосфора обеспечиваются ископаемыми изверженных (апатиты) или осадочных пород (фосфориты). Из материнской породы неорганический фосфор вовлекается в цир­куляцию выщелачиванием и растворением в континентальных во­дах. Попадая в экосистемы суши, почву, фосфор поглощается рас­тениями из водного раствора в виде неорганического фосфат-иона (РО43-) и включается в состав различных органических соедине­ний, где он выступает в форме органического фосфата. По пище­вым цепям фосфор переходит от растений к другим организмам экосистемы. Химически связанный фосфор попадает с остатками растений и животных в почву, где вновь подвергается воздействию микроорганизмов и превращается в минеральные ортофосфаты, а в дальнейшем происходит повторение цикла.

В водные экосистемы фосфор попадает благодаря поверхностному и грунтовому стоку. В пресных водоемах фосфаты вызывают бурный рост сине-зеленой растительности и деградацию водных экосистем. В соленых морских водах фосфор переходит в состав фитопланктона, слу­жащего пищей другим организмам моря, в последующем накап­ливаясь в тканях морских животных, например, рыб. Отмершие остатки организмов приводят к накоплению фосфора на разных глубинах. Отсюда следует, что фосфор, попа­дая в водоемы тем или иным путем, насыщает, а нередко и пере­насыщает их экосистемы.

Поэтому при рассмотрении круговорота фосфора в масштабе биосферы за сравнительно короткий период можно отметить, что он полнос­тью не замкнут. Механизм возвращения фосфора из океанов на сушу в естественных условиях совершенно не способен компенсировать его встречный поток. В связи с тем, что запасы фосфора на Земле малы (содержание не превышает 1% в земной коре), то любые воздействия человека на биогеохимический круго­ворот фосфора несут опасность потери фосфора, что делает его менее замкнутым. П. Дювиньо (1967) подчеркивал, что «положение однажды окажется весьма угрожающим… фос­фор — наиболее слабое звено в жизненной цепи, которая обес­печивает существование человека». А возрастающее антропогенное потребление фосфора существенно, если не угрожающе, усиливает опасную тенденцию быстрого истощения его запасов.

Круговорот серы. Существуют многочисленные газообраз­ные соединения серы, такие, как сероводород H2S и сернистый ангидрид SO2., но преобладающая часть круговорота этого элемента имеет осадочную природу и происходит в почве и воде.

Основной источник серы, доступный живым организмам, — сульфаты (SO42-). Доступ неорганической серы в экосистеме об­легчает хорошая растворимость многих сульфатов в воде. Расте­ния, поглощая сульфаты, восстанавливают их и вырабатывают серосодержащие аминокислоты (метионин, цистеин, цистин), играющие важную роль в выработке протеинов.

В целом, по сравнению с азотом и фосфором сера реже является лимитирую­щим фактором для растений и животных. Вместе с тем круго­ворот серы относится к ключевым в общем процессе продук­ции и разложения биомассы. К примеру, при образовании в осадках сульфидов железа фосфор из нерастворимой формы переводится в растворимую и становится доступным для орга­низмов. Это подтверждение того, как один круговорот регули­руется другим.

Влияние антропогенной деятельности на вещественный баланс серы в биосфере незначительно и проявляется в основном в возникновении локальных опасностей, связанных с высокой токсичностью вырабатываемых серосодержащих веществ (газы, кислоты и соли).





Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7   8   9   ...   22


База данных защищена авторским правом ©ekollog.ru 2017
обратиться к администрации

войти | регистрация
    Главная страница


загрузить материал