Правила работы в химической лаборатории. Лабораторная химическая посуда. Первая помощь при несчастных случаях



страница1/6
Дата02.05.2016
Размер0.76 Mb.
ТипПравила
  1   2   3   4   5   6
ЛАБОРАТОРНАЯ РАБОТА

ПРАВИЛА РАБОТЫ В ХИМИЧЕСКОЙ ЛАБОРАТОРИИ.

Лабораторная химическая посуда. Первая помощь при несчастных случаях
Цели работы

  • изучить «Правила техники безопасности при работе в кабинете химии»;

  • изучить «Общие правила техники безопасности при работе в кабинете химии»;

  • познакомиться с лабораторной посудой и оборудованием и правилами обращения с ними;

  • знать правила первой помощи при несчастных случаях и уметь их применять.




  1. ОБЩИЕ ПРАВИЛА РАБОТЫ В ХИМИЧЕСКОЙ АБОРАТОРИИ

Лабораторные работы проводят в специально оборудованной химической лаборатории. При работе в лаборатории необходимо знать и строго соблюдать установленные правила. Работать разрешается только после ознакомления с правилами по технике безопасности и правилами работы в химической лаборатории.

1. Рабочее место содержите в чистоте и порядке, не загромождайте его посторонними предметами.

2. Не допускайте попадания химических реактивов на кожу и одежду. Нельзя брать вещества руками и пробовать на вкус

3. Не уносите на свои рабочие места реактивы общего пользования. Если нет указаний по дозировке реактивов для данного опыта, то берите их в минимальном количестве.

4. Запрещается пользоваться реактивами без этикеток или с сомнительными этикетками.

5. Во всех опытах используйте дистиллированную воду. Сухие реактивы берите только чистым шпателем. Не путайте пробки от склянок с различными реактивами. Излишки реактивов не высыпайте и не выливайте в склянки, из которых они взяты.

6. Особую осторожность соблюдайте при работе ядовитыми и вредными веществами, с концентрированными кислотами и щелочами. Работать с ними следует в вытяжном шкафу.

7. При нагревании жидкости в пробирке необходимо держать ее так, чтобы в случае разбрызгивания жидкость не попала на самого экспериментатора и рядом работающих студентов, т.е. отверстие пробирки должно быть направлено в сторону от себя и товарищей. Лучше всего направить его на стенку вытяжного шкафа. Не забывайте пользоваться при этом держателем.

8. После опытов остатки реактивов сливайте в раковину после разбавления водой. Металлы собирайте в отведенную для этого склянку. Остатки агрессивных и дорогостоящих реактивов собирайте в специальные склянки.

9. Не трогайте, не включайте и не выключайте без разрешения рубильники и электрические приборы.

10. В лаборатории соблюдайте тишину, не занимайтесь посторонними делами, не проводите опыты, не относящиеся к данной лабораторной работе и не описанные в методическом указании.

Студентам следует заранее готовиться к лабораторному занятию. Выполнению лабораторной работы предшествует собеседование с преподавателем. Подготовку рекомендуется начинать с изучения теоретического материала, относящегося к данной работе. Необходимо твердо усвоить основные теоретические положения, законы и их математические выражения.

Перед выполнением работы следует ознакомиться с методикой проведения эксперимента, изучить принцип действия приборов и установок, понять цель работы. При выполнении лабораторной работы внимательно следите за ходом опыта. В случае неудачной постановки опыта, прежде чем его повторить, установите причину неудачи. После окончания работы необходимо вымыть посуду, привести в порядок рабочее место.

За чистоту и порядок на рабочем месте отвечает студент, а в лаборатории - дежурный студент. Дежурный принимает рабочее место у студентов, закончивших выполнение лабораторной работы, и сдает лабораторию лаборанту. Кроме того, дежурный студент должен получить у лаборанта все необходимое для проведения данной лабораторной работы, а после окончания занятия - сдать. После выполнения лабораторной работы студент должен оформить отчет и сдать его преподавателю.


Отчет должен содержать следующие сведения:
1. Название работы и дату ее выполнения.

2. Цель работы.

3. Номер и название опыта.

4. Краткое описание хода работы с указанием условий проведения опыта.

5. Рисунки и схемы используемых приборов,

6. Наблюдения и уравнения реакций.

7. Расчеты, таблицы, графики.

8. Выводы. Ответа на контрольные вопросы.

Если в лабораторных работах необходимо проводить расчеты. Следует иметь в виду, что излишняя точность в расчетах, значительно превышающая экспериментальную погрешность, не повышает точность результата. Для числовых значений рассчитываемых величин достаточно 3-4 значащие цифры (число знаков, стоящих после предшествующих им нулей). Число значащих цифр не следует путать с числом знаков после запятой. Так в числах: 101,3; 21,73; 0,4385; 0,004500 имеется четыре значащих цифры. В расчетах принято указывать значащие цифры и в том случае, когда это нули, стоящие в конце числа. Поэтому правильной будет запись с точностью до четвертой значащей цифры - 0,2500, а не 0,25.

Результаты измерений неизбежно будут отклоняться от истинных значений соответствующих величин. Для определения ошибки необходимо получить 4-5 параллельных результатов измерений и найти среднее арифметическое значение, которое будет больше всего приближаться к истинному значению.

При обработке результатов следует определять абсолютную и относительную ошибку измерения данной величины.

Абсолютная ошибка показывает, на сколько данная измеряемая величина больше или меньше истинной величины




Отношение абсолютной ошибки к истинной величине, умноженное на 100 %, дает относительную ошибку определения (в процентах) или погрешность:




Если результаты измерений необходимо представить в виде графика, то чертеж необходимо выполнять на миллиметровой бумаге и вклеить его в отчет. Оси координат располагают на расстоянии 2 - 2,5 см от края листа. Около осей указывают буквенные обозначения величин и их единиц измерений. Масштаб выбирают так, чтобы кривая полученной зависимости занимала почти всю площадь графика и не прижата к одной из осей координат. Против делений ставят числовые значения измеряемой величины. Кривую проводят через точки, руководствуясь не только их расположением, но и теоретическими соображениями о виде полученной зависимости. Если исследуемая зависимость должна быть линейна, то проводят прямую линию, так чтобы большинство точек приближались к этой линии. Экспериментальные точки могут несколько отклоняться от нее из-за погрешности эксперимента.


    1. Лабораторная химическая посуда

В химической лаборатории очень часто приходится работать с посудой из стекла и фарфора. Лабораторную посуду можно подразделить на следующие виды:

1. посуду общего назначения;

2. посуду специального назначения;

3. мерную посуду;

4. фарфоровую посуду.



      1. Посуда общего назначения

Пробирки (рис. 1.) используют для проведения химических опытов с небольшим количеством веществ. Пробирки могут быть цилиндрические и конические. Хранят пробирки в штативах. Перемешивание веществ в них проводят встряхиванием пробирки, нанося небольшой удар пальцем по нижней части пробирки. Моют пробирки с помощью ерша.

Колбы (рис. 2.) бывают разной вместимости (от 1-2 литров до 25 миллилитров) и разной формы: плоскодонные, круглодонные, конические, колбы Вюрца.

Стаканы (рис. 3.) могут быть разной вместимости (от 1 литра до 25 миллилитров), разной формы, разные по высоте и ширине, термостойкие и нетермостойкие.

Воронки (рис. 4.) бывают различной формы и размеров, и в зависимости от этого имеют разное назначение.
1.2.2. Посуда специального назначения

Эксикаторы (рис. 5.) применяют для хранения веществ, легко поглощающих влагу, и для высушивания веществ. Для этого в нижнюю часть эксикатора помещают вещества, которые способны поглощать воду:

СаC l2 (безводный),H2SO4 (концентрированная),Р205.



Промывные склянки (рис. 6.) используют для промывания, очистки и высушивания газов.
1.2.3. Мерная посуда

Мерная посуда (рис. 7.) - мерной называют посуду, применяемую для измерения объема жидкости с разной точностью.

Для измерения объема с небольшой точностью применяют мерные цилиндры и мензурки.

Для точного измерения объема жидкости используют пипетки, бюретки и мерные колбы.

Мерная посуда может быть разной вместимости. В зависимости от объема, который должен быть измерен, подбирается посуда соответствующей вместимости. Мерная посуда градуируется в миллилитрах (мл) или литрах (л). 1 мл соответствует 1 см3, а 1 л - 1 дм3.

При измерении объема жидкости мерный сосуд необходимо держать в вертикальном положении, а отсчеты вести по нижней части вогнутой поверхности мениска жидкости. Причем глаз наблюдателя должен находиться на одной горизонтальной линии с нижним краем мениска (рис. 8.).

Пипетки (рис. 7.) используют для отмеривания и переноса, точно определенного объема жидкости. Обыкновенная пипетка представляет собой стеклянную трубку небольшого диаметра с расширением посередине или без него, если пипетка небольшой вместимости (от 0,1 до 2-5 мл). Нижний конец пипетки оттянут в капилляр, а на верхнем конце имеется метка, до которой набирают жидкость. Для отмеривания необходимого объема жидкости нижний конец пипетки, соответствующей вместимости, опускают в жидкость до дна сосуда и с помощью груши (или рта, если раствор не опасен) набирают жидкость, следя за тем, чтобы кончик пипетки все время находился в жидкости. Жидкость набирают выше метки на 2-3 см, затем быстро закрывают верхнее отверстие указательным пальцем, придерживаю пипетку большим и средним пальцами. Затем, слегка ослабив нажим указательного пальца, дают жидкости медленно вытекать из пипетки. Как только нижний мениск жидкости дойдет до метки, палец снова плотно прижимают к верхнему отверстию пипетки. Таким образом, с помощью пипетки отбирается необходимый объем жидкости. Затем пипетку вводят в колбу (или стакан), в которую нужно перенести жидкость, отнимают указательный палец от верхнего отверстия пипетки и дают жидкости стечь по стенке колбы. Оставшуюся при этом жидкость в пипетке не выдувают, так как объем пипетки рассчитан на свободное истечение жидкости.

Бюретки (рис. 7.) применяют при титровании или для того, чтобы отмерить объем жидкости с точностью до 0,05 мл. Бюретка – стеклянная градуированная трубка, нижний конец которой оттянут и на него надета резиновая трубка со стеклянным шариком. Могут быть и бюретки с притертым стеклянным краном.

Перед началом работы бюретки закрепляют в штативе. Заполняют бюретку жидкостью сверху через воронку так, чтобы внутри находился раствор без пузырьков воздуха. Для удаления пузырьков воздуха резиновую трубку изгибают таким образом, чтобы кончик капилляра был направлен вверх, и вытесняют жидкостью весь воздух. Затем бюретку заполняют до нулевой отметки.



Мерные колбы (рис. 7.) используют для приготовления растворов точной концентрации. Для этого в колбу вносят точную навеску сухого вещества или рассчитанный объем исходного раствора. Затем до половины объема колбы наливают дистиллированную воду. Раствор тщательно перемешивают и доливают дистиллированную воду до метки, (последние 1-2 мл лучше по каплям с помощью пипетки). Потом плотно закрывают колбу пробкой и тщательно перемешивают

раствор, переворачивая колбу несколько раз.




1.2.4. Фарфоровая посуда

К фарфоровой посуде относят тигли, чашки, ступки, кружки, стаканы и т. д. (рис. 9). Чашки и тигли используют для выпаривания жидкостей и прокаливания твердых веществ. Они выдерживают температуру выше 1000°С. для измельчения твердых веществ используют ступки.


1.3. Первая помощь при несчастных случаях
В лаборатории бывают случаи, требующие неотложной медицинской помощи, - порезы рук стеклом, ожоги горячими предметами, кислотами, щелочами. В особо серьезных случаях необходимо обратиться к врачу.

Для оказания первой помощи в лаборатории имеется аптечка.



1. При ранении стеклом удалите осколки из раны, смажьте края раны раствором йода и перевяжите бинтом.

2. При ожоге рук или лица реактивом смойте реактив большим количеством воды, затем либо разбавленной уксусной кислотой (в случае ожога щелочью), либо раствором соли (в случае ожога кислотой), а затем опять водой.

3. При ожоге горячей жидкостью или горячим предметом обожженное место обработайте свежеприготовленным раствором перманганата калия, смажьте обожженное место мазью от ожога или вазелином. Можно присыпать ожог содой и забинтовать.

4. При химических ожогах глаз обильно промойте их водой, используя глазную ванночку, а затем обратитесь к врачу.











Лабораторная работа

Изготовление моделей молекул органических веществ

Цели работы

  • изучить особенности строения молекул органических веществ;

  • найти общие признаки и различия гомологов и изомеров;

  • научиться составлять модели молекул различной сложности.

Краткие теоретические сведения

Для того чтобы понять сущность работы, надо знать, что:



1. Простейшим представителем насыщенных углеводородов является метан, структурная формула которого



2. sp3- гибридизация характерна для атомов

углерода в (алканах) – в частности, в метане.



рис. 10

3. Атом углерода в молекуле метана расположен в центре тетраэдра, атомы водорода – в его вершинах.

4. Валентные углы между направлениями связей равны между собой и составляют угол 109°28'.



5. В этане есть углерод-углеродные связи.

L (С-С) = 0,154 нм.

Оборудование

  • пластилин, спички.

  1. рис. 11

Задание № 1. Составление сокращённых структурных формул углеводородов.

  1. Формула молекулы метана.

  2. Формула молекулы этана.

  3. Формула молекулы пропана.

  4. Формулы молекул бутана и изобутана.

  5. Формулы молекулы пентана и всех его изомеров.

Задание № 2. Изготовление моделей молекул углеводородов

  1. Модель молекулы метана. Соберите модель молекулы метана, используя для этого спички и пластилин. Для этого из пластилина (в наборе 16 шариков) выберите четыре шарика, а из пластилина (в наборе 7 шариков) – один шарик. В качестве стержней можно использовать спички. Учтите, что в молекуле метана угол между химическими связями С–Н составляет 109°28', т. е. молекула имеет тетраэдрическое строение (см. рис. 10).

  2. Модель молекулы этана. Соберите модель молекулы этана, используя для этого спички и пластилин. Учтите, что в молекуле этана угол между химическими связями С–Н составляет 109°28', а углерод-углеродные связи L (С-С) = 0,154 нм. (см. рис. 11).

  3. Модель молекулы пропана. Соберите модель молекулы пропана, используя для этого спички и пластилин.

  4. Модели молекул бутана и изобутана. Соберите модель молекулы н-бутана, используя пластилин. Подумайте и переделайте модель н-бутана в модель молекулы изобутана. Учтите, что в бутане атомы углерода расположены по отношению друг к другу под углом 109°, т. е. углеродная цепь должна иметь зигзагообразное строение. В молекуле изобутана все связи центрального атома углерода направлены к вершинам правильного тетраэдра. Сравните строение этих углеводородов.

  5. Модели молекул пентана и всех его изомеров. Соберите модель молекулы н-пентана и всех его изомеров последовательно, используя пластилин.

Вопросы для выводов

  1. Сколько моделей: а) гомологов, б) изомеров было собрано во время лабораторной работы

  2. Что общего и в чём различия в строении а) гомологов, б) изомеров

Контрольные вопросы

  1. Какие вещества называют органическими?

  2. В чем отличие органических веществ от неорганических веществ?

  3. Определите молекулярную формулу вещества, если оно содержит С-80%,Н-20%, а плотность вещества по водороду равна 15.

Список литературы

Габриелян О. С. Химия: учеб. для студ. проф. учеб. заведений. – М., 2005.



Лабораторная работа

Природные источники углеводородов. Ознакомление с коллекцией образцов нефти и продуктов её переработки

Цели работы

  • обобщить и систематизировать знания об углеводородах;

  • ознакомиться с образцами нефти, гипотезами происхождения нефти, составом и свойствами;

  • изучить способы получения и областях использования углеводородов, включая экологические аспекты

  • уметь самостоятельно работать с новыми источниками информации: анализировать, систематизировать, классифицировать, отбирать требуемую информацию, представлять ее в табличной форме, переводить информацию из одной знаковой системы в другую

  • уметь работать в парах, группах и индивидуально

Краткие теоретические сведения

Что же такое нефть? Теплотехник ответит, что это прекрасное, высококалорийное топливо. Но химик возразит: нет! Нефть – это сложная смесь жидких углеводородов, в которых растворены газообразные и другие вещества. И чтобы перечислить все продукты, получаемые из нефти, нужно потратить несколько листов, так как их уже несколько тысяч. Еще Д.И. Менделеев заметил, что топить печь нефтью все равно, что топить ее ассигнациями.

Нефть (от перс. neft) - горючая маслянистая жидкость со специфическим запахом, распространенная в осадочной оболочке Земли и являющаяся важнейшим полезным ископаемым.

Нахождение в природе

Залежи нефти находятся в недрах Земли на разной глубине, где нефть заполняет свободное пространство между некоторыми породами. Если она находится под давлением газов, то поднимается по скважине на поверхность Земли. По запасам нефти наша страна занимает одно из ведущих мест в мире.



Физические свойства.

Нефть – маслянистая жидкость от светло-бурого до черного цвета с характерным запахом. Она немного легче воды и практически в ней не растворяется. Так как нефть – смесь различных углеводородов, то у нее нет определенной температуры кипения.

Нефть сильно варьирует по цвету (от светло-коричневой, почти бесцветной, до темно-бурой, почти черной) и по плотности (от легкой 0,65-0,70 г/см 3 , до тяжелой 0,98-1,05 г/см 3 ).

Начало кипения нефти обычно выше 28 0 С. температура застывания колеблется от +30 0 до –60 0 С и зависит в основном от содержания парафина (чем его больше, тем температура застывания выше). Теплоемкость нефти 1,7-2,1 кДж/кг; теплота сгорания 43,7-46,2 мДж/кг.

Вязкость изменяется в широких пределах и зависит от химического и фракционного состава нефти и смолистости (содержания в ней асфальтосмолистых веществ). Температура вспышки нефти колеблется от –35 до 1200С в зависимости от фракционного состава и давления насыщенных паров. Нефть растворима в органических растворителях, в воде при обычных условиях практически нерастворима, но может образовывать с ней стойкие эмульсии.

Классификация нефти.

По содержанию серы:

Малосернистые (до 0,5 % S) и Сернистые (0,5-2 % S)



По потенциальному содержанию масел:

М1 – не меньше 25 % и М2 – меньше 25 %.



Высокосернистые (св. 2 % S).

По потенциальному содержанию фракций, выкипающих до 3500С:

a) Т1 – тип нефти, в которой указанных фракций не меньше 45 %,

b) Т2 – 30-44,9 %, c) Т3 – меньше 30 %.



По качеству масел:

Подгруппа И1 – с индексом вязкости масел больше 85

Подгруппа И2 – с индексом 40-85.


Состав нефти

В зависимости от месторождения нефть имеет различный качественный и количественный состав. Так, например, бакинская нефть богата циклопарафинами и сравнительно бедна предельными углеводородами. Значительно больше предельных углеводородов в грозненской и ферганской нефти. Пермская нефть содержит ароматические углеводороды.

Представляя собой жидкость, более легкую, чем вода, нефть разных мест, иногда даже и соседних, различна по многим свойствам: цвету, плотности, летучести, температуры кипения... Однако любая нефть это жидкость почти нерастворимая в воде и по элементарному составу содержащая преимущественно углеводороды с подмесью небольшого количества кислородных, сернистых, азотистых и минеральных соединений, что видно не только по элементарному составу, но и по всем свойствам углеводородов. В бакинской (апшеронской) нефти Марковников и Оглоблин нашли от 86,6 до 87,0% углерода и от 13,1 до 13,4% водорода.

Нефть и способы ее переработки

Истоки современных представлений о происхождении нефти возникли в XVIII – начале XIX века. М. В. Ломоносов заложил гипотезы органического происхождения нефти, объясняя ее образование воздействием “подземного огня” на “окаменелые уголья”, в результате чего, по его мнению, образовывались асфальты, нефти и “каменные масла”. Идея о минеральном происхождении нефти впервые была высказана А. Гумбольдтом в 1805 году.



Добыча нефти

Почти вся добываемая в мире нефть, извлекается посредством буровых скважин, закрепленных стальными трубами высокого давления. Для подъема нефти и сопутствующих ей газа и воды на поверхность скважина имеет герметичную систему подъемных труб, механизмов и арматуры, рассчитанную на работу с давлениями, соизмеримыми с пластовыми. Добыче нефти при помощи буровых скважин предшествовали примитивные способы: сбор ее на поверхности водоемов, обработка песчаника или известняка, пропитанного нефтью, посредством колодцев.

 Очистка нефти

Первый завод по очистке нефти был построен в России в 1745 г., в период правления Елизаветы Петровны, на Ухтинском нефтяном промысле. В Петербурге и в Москве тогда пользовались свечами, а в малых городах – лучинами. Но уже тогда во многих церквях горели неугасаемые лампады. В них наливалось гарное масло, которое было не чем иным, как смесью очищенной нефти с растительным маслом. Купец Набатов был единственным поставщиком очищенной нефти для соборов и монастырей.

В конце XVIII столетия была изобретена лампа. С появлением ламп возрос спрос на керосин.

Очистка нефти – удаление из нефтепродуктов нежелательных компонентов, отрицательно влияющих на эксплуатационные свойства топлив и масел.

Химическая очистка производится путем воздействия различных реагентов на удаляемые компоненты очищаемых продуктов. Наиболее простым способом является очистка 92-92% серной кислотой и олеумом, применяемая для удаления непредельных и ароматических углеводородов.

При адсорбционной очистке из нефтепродуктов удаляются непредельные углеводороды, смолы, кислоты и др. адсорбционную очистку осуществляют при контактировании нагретого воздуха с адсорбентами или фильтрацией продукта через зерна адсорбента.

Каталитическая очистка – гидрогенизация в мягких условиях, применяемая для удаления сернистых и азотистых соединений.

Перегонка нефти

Братья Дубинины впервые создали устройство для перегонки нефти. С 1823 г. Дубинины стали вывозить фотоген (керосин) многими тысячами пудов из Моздока внутрь России. Завод Дубининых был очень прост: котел в печке, из котла идет труба через бочку с водой в пустую бочку. Бочка с водой – холодильник, пустая – приемник для керосина.

На современном заводе вместо котла устраивается ложная трубчатая печь. Вместо трубки для конденсации и разделения паров сооружаются огромные ректификационные колонны. А для приёма продуктов перегонки выстраиваются целые городки резервуаров.

Нефть состоит из смеси различных веществ (главным образом углеводородов) и потому не имеет определённой точки кипения. На трубчатках нефть подогревают до 300-325оС. При такой температуре более летучие вещества нефти превращаются в пар.

Печи на нефтеперегонных заводах особые. С виду они похожи на дома без окон. Выкладываются печи из лучшего огнеупорного кирпича. Внутри, вдоль и поперёк, тянутся трубы. Длина труб в печах достигает километра.

Нефтяники нашли способ перегонки нефти без разложения углеводородов.

Крекинг нефтепродуктов.

Выход бензина из нефти можно значительно увеличить (до 65-70 %) путем расщепления углеводородов с длинной цепью, содержащихся, например, в мазуте, на углеводороды с меньшей относительной молекулярной массой. Такой процесс называется крекингом (от англ. Crack- расщеплять).

Крекингом называется процесс расщепления углеводородов, содержащихся в нефти, в результате которого образуются углеводороды с меньшим числом атомов углерода в молекуле.

Крекинг изобрел русский инженер В.Г. Шухов в 1891 г. В 1913 г изобретение Шухова начали применять в Америке. В настоящее время в США 65% всех бензинов получается на крекинг - заводах.

При крекинге нефть подвергается химическим изменениям. Меняется строение углеводородов. В аппаратах крекинг – заводов происходят сложные химические реакции. Эти реакции усиливаются, когда в аппаратуру вводят катализаторы.

Термический крекинг. Расщепление молекул углеводородов протекает при более высокой температуре (470-550 0 С). Процесс протекает медленно, образуются углеводороды с неразветвленной цепью атомов углерода.

В бензине, полученном в результате термического крекинга, наряду с предельными углеводородами, содержится много непредельных углеводородов. Поэтому этот бензин обладает большей детонационной стойкостью, чем бензин прямой перегонки.

В бензине термического крекинга содержится много непредельных углеводородов, которые легко окисляются и полимеризуются. Поэтому этот бензин менее устойчив при хранении. При его сгорании могут засориться различные части двигателя. Для устранения этого вредного действия к такому бензину добавляют окислители.

Каталитический крекинг. Расщепление молекул углеводородов протекает в присутствии катализаторов и при более низкой температуре (450-500 0 С). Главное внимание уделяют бензину. Его стараются получить больше и обязательно лучшего качества. Каталитический крекинг появился именно в результате долголетней, упорной борьбы нефтяников за повышение качества бензина. По сравнению с термическим крекингом процесс протекает значительно быстрее, при этом происходит не только расщепление молекул углеводородов, но и их изомеризация, т.е. образуются углеводороды с разветвленной цепью атомов углеродов.

Бензин каталитического крекинга по сравнению с бензином термического крекинга обладает еще большей детонационной стойкостью , ибо в нем содержатся углеводороды с разветвленной цепью углеродных атомов.

В бензине каталитического крекинга непредельных углеводородов содержится меньше, и поэтому процессы окисления и полимеризации в нем не протекают. Такой бензин более устойчив при хранении.

Риформинг – (от англ. Reforming – переделывать, улучшать) промышленный процесс переработки бензиновых и лигроиновых фракций нефти с целью получения высококачественных бензинов и ароматических углеводородов. При этом молекулы углеводородов в основном не расщепляются, а преобразуются. Сырьем служит бензинолигроиновая фракция нефти.

Перспективы на будущее

В настоящее время нефтехимия дает почти четверть всей химической продукции. Нефть – ценнейшее природное ископаемое, открывшее перед человеком удивительные возможности “химического перевоплощения”. Всего производных нефти насчитывается уже около 3 тысяч.

Нефть занимает ведущее место в мировом топливно-энергетическом хозяйстве. Ее доля в общем потреблении энергоресурсов непрерывно растет. Нефть составляет основу топливно-энергетических балансов всех экономически развитых стран.

Продукты, получаемые из нефти, их применение

Из нефти выделяют разнообразные продукты, имеющие большое практическое значение. Вначале от нее отделяют растворенные углеводороды (преимущественно метан). После отгонки летучих углеводородов нефть нагревают. Первыми переходят в газообразное состояние и отгоняются углеводороды с небольшим числом атомов углерода в молекуле, имеющие относительно низкую температуру кипения. С повышением температуры смеси перегоняются углеводороды с более высокой температурой кипения. Таким образом можно собрать отдельные смеси (фракции) нефти. Чаще всего при такой перегонке получают три основные фракции, которые затем подвергаются дальнейшему разделению. Основные фракции нефти следующие:

Фракция, собираемая от 400 до 200 0С, - газолиновая фракция бензинов – содержит углеводороды от С5 Н12 до С1 Н 24 . При дальнейшей перегонке выделенной фракции получают: газолин (от 400 до 700С), бензин (от 700 до 1200 С) – авиационный, автомобильный и т.д.

Лигроиновая фракция , собираемая в пределах от 1500 до 2500 С, содержит углеводороды от С8 Н18 до С14 Н30 . Лигроин применяется как горючее для тракторов.

Керосиновая фракция включает углеводороды от С12 Н26 до С18 Н38 с температурой кипения от 1800 до 300 0С. керосин после очистки используется в качестве горючего для тракторов, реактивных самолетов и ракет.

Газойль (выше 275 0 С) – дизельное топливо.

Мазут – остаток от перегонки. Содержит углеводороды с большим числом атомов углерода (до многих десятков) в молекуле. Мазут также разделяют на фракции:

Соляровые масла – дизельное топливо,

Смазочные масла (авиатракторные, авиационные, индустриальные и др.),

Вазелин (основа для косметических средств и лекарств).

Из некоторых сортов нефти получают парафин (для производства спичек, свечей и др.). После отгонки остается гудрон . Его широко применяют в дорожном строительстве.

Оборудование


  • коллекции: «Нефть и продукты ее переработки», «Топливо», «Уголь и продукты его переработки»

Задание № 1. Ознакомление с различными видами природных источников углеводородов.

Таблица № 1

ПИУ

Природный и попутный газы

Нефть

Уголь

1. Агрегатное состояние и состав










2. Запасы










3. Переработка










4. Применение










Задание № 2. Ознакомление с коллекцией «Нефть и продукты ее переработки»

1. Рассмотрите выданную вам коллекцию. Заполните таблицу № 2. Объясните, почему все нефтепродукты (кроме мазута) называют светлыми. Запишите формулы углеводородов, образующих фракции светлых нефтепродуктов. Какие физические процессы лежат в основе их получения?

2. Познакомьтесь со смазочными маслами, получаемыми перегонкой мазута. Какие процессы лежат в основе их получения? Таблица № 2


Продукты

НЕФТЕПЕРЕРАБОТКИ

Свойства

(агр. сост., цвет, особенности)



Применение

1. Газ







2. Бензин







3. Лигроин







4. Керосин







5. Мазут







6. Гудрон








Вопросы для выводов

Дать оценку экологической и экономической эффективности нефти, угля и природного газа как топлива и сырья для хим. промышленности.


Список литературы

Габриелян О. С. Химия: учеб. для студ. проф. учеб. заведений. – М., 2005.




  1   2   3   4   5   6


База данных защищена авторским правом ©ekollog.ru 2017
обратиться к администрации

войти | регистрация
    Главная страница


загрузить материал