Программа вступительных испытаний по программам магистерской подготовки по направлению 18. 04. 01 Химическая технология Екатеринбург



страница1/4
Дата02.05.2016
Размер0.69 Mb.
ТипПрограмма
  1   2   3   4
ФАГОУ ВПО «Уральский федеральный университет имени первого Президента РФ Б.Н. Ельцина»

Химико-технологический институт

Утверждаю

Директор ХТИ___________В.Л. Русинов

«___»_________________2014 г.

ПРОГРАММА

вступительных испытаний по программам магистерской подготовки по направлению 18.04.01 – Химическая технология

Екатеринбург

2014


Введение

Настоящая программа охватывает основополагающие разделы химической технологии, ее теоретические основы (строение вещества, термодинамика и кинетика), химию элементов, свойства и методы синтеза основных классов соединений, а также методы их исследования.

Программа разработана для магистерских программ:


  • Электрохимические процессы и производства (разделы 1, 4, 5);

  • Водородная и электрохимическая энергетика (разделы 1, 4, 5);

  • Технология химической и электрохимической защиты материалов (разделы 1, 4, 5;

  • Химическая технология биологически активных соединений (разделы 1, 2, 3);

  • Химическая технология тонкого органического синтеза (разделы 1, 2, 3, 4);

  • Химическая технология основного органического и нефтехимического синтеза (разделы 1, 2, 3, 6);

  • Химическая технология природных энергоносителей и углеродных материалов (разделы 1, 2, 3, 6)

  • Химическая технология и переработка полимеров (разделы 1, 2, 3, 4);

  • Медицинская химия (разделы 1, 2, 3);

  • Комплексное химическое и физическое исследование и экспертная оценка органических материалов (разделы 1, 2, 3,);

  • Физико-химические технологии кристаллов и ИК-световодов (разделы 4,5);

  • Технологии материалов и изделий оптоэлектроники и сенсорики (разделы 4,5);

  • Тонкопленочные технологии в электронике и наноэлектронике (разделы 4,5)

  • Химическая технология основного неорганического синтеза (разделы 1,4,7)

  • Электрохимические методы и сенсоры для мониторинга окружающей среды и биологических объектов (разделы 1, 2, 5).

  • Электрохимическое материаловедение (разделы 1, 4, 5).

Раздел 1. Аналитическая химия

1. Общие вопросы

Предмет аналитической химии. Цели и особенности аналитической химии и аналитической службы. Взаимосвязь аналитической химии с другими науками, значение для общества. Основные этапы развития. Аналитические задачи: обнаружение, идентификация, определение веществ.

Химические, физические и биологические методы аналитической химии. Методы обнаружения, идентификации, разделения и концентрирования, определения; гибридные и комбинированные методы. Методы прямые и косвенные.

Основные характеристики методов определения: чувствительность, предел обнаружения, диапазон определяемых содержаний, воспроизводимость, правильность, селективность. Метод и методика.

Виды химического анализа: изотопный, атомный, структурно-групповой (функциональный), молекулярный, вещественный, фазовый. Макро-, микро-, ультрамикроанализ. Локальный, неразрушающий, дистанционный, непрерывный, внелабораторный (полевой).

2. Методы анализа

2.1. Химические методы

2.1.1. Теоретические основы

Использование законов термодинамики и кинетики для описания и управления реальными гомогенными и гетерогенными системами.

Количественные характеристики равновесий: термодинамическая и концентрационные константы, стандартный и формальный потенциалы, степень образования (мольная доля) компонента. Расчет активностей и равновесных концентраций компонентов. Буферные системы.

Кислотно-основное равновесие. Развитие представлений о кислотах и основаниях. Использование протолитической теории для описания равновесий. Влияние свойств растворителей; их классификация. Константы кислотности и основности. Функция Гаммета. Буферные растворы.

Комплексообразование. Типы комплексных соединений, используемых в химическом анализе. Ступенчатое комплексообразование. Константы устойчивости. Методы определения состава комплексных соединений и расчета констант устойчивости. Кинетика реакций комплексообразования. Инертные и лабильные комплексы. Примеры использования комплексов.

Окислительно-восстановительное равновесие. Обратимые и необратимые реакции. Уравнение Нернста. Смешанный потенциал. Методы измерения потенциалов. Константы равновесия. Механизм окислительно-восстановительных реакций. Каталитические, автокаталитические, сопряженные и индуцированные окислительно-восстановительные реакции. Примеры аналитического использования.

Процессы осаждения-растворения. Равновесия в системе жидкость -твердая фаза. Константы равновесия; растворимость. Механизм образования и свойства кристаллических и аморфных осадков. Коллоидные системы. Загрязнения и условия получения чистых осадков.

Органические реагенты в химическом анализе. Функционально-аналитические группы. Влияние структуры органических реагентов на их свойства. Теоретические основы взаимодействия органических реагентов с ионами металлов.

2.1.2. Гравиметрические методы

Сущность, значение, достоинства и ограничения прямых и косвенных гравиметрических методов. Требования, предъявляемые к осадкам. Важнейшие неорганические и органические осадители. Аналитические весы.



2.1.3. Титриметрические методы

Сущность и классификация. Виды титрования (прямое, обратное, косвенное). Кривые титрования. Точка эквивалентности, конечная точка титрования.



Кислотно-основное титрование в водных и неводных средах. Первичные стандартные растворы. Кривые титрования для одно- и многоосновных систем. Индикаторы.

Окислительно-восстановительное титрование. Первичные и вторичные стандартные растворы. Кривые титрования. Индикаторы. Предварительное окисление и восстановление определяемых соединений. Краткая характеристика различных методов.

Комплексометрическое титрование. Сущность. Использование аминополикарбоновых кислот в комплексонометрии. Важнейшие универсальные и специфические металлохромные индикаторы. Практическое использование.

Осадительное титрование. Сущность. Кривые титрования. Методы индикации конечной точки титрования. Индикаторы.

2.1.4. Кинетические методы

Сущность методов. Дифференциальный и интегральный варианты. Каталитический и некаталитический варианты. Методы определения концентрации индикаторных веществ. Чувствительность, избирательность и точность, области применения.



2.1.5. Биохимические методы

Сущность методов. Ферментативные индикаторные реакции. Химическая природа и структура ферментов. Иммобилизованные ферменты. Биосенсоры и ферментные электроды. Сущность иммунных методов. Методы регистрации аналитического сигнала в биохимических и иммунных методах. Чувствительность, избирательность и точность методов. Области применения.



2.1.6. Электрохимические методы. Теоретические основы

Основные процессы, протекающие на электродах в электрохимической ячейке. Кинетика электрохимических процессов. Поляризационная кривая. Классификация методов.



Потенциометрия. Равновесные электрохимические системы и их характеристики. Ионометрия: возможности метода и ограничения. Типы ионселективных электродов и их характеристики. Полевые транзисторы. Потенциометрическое титрование с неполяризованными и поляризованными электродами.

Кулонометрия. Прямая потенциостатическая и гальваностатическая кулонометрия. Кулонометрическое титрование, его возможности и преимущества.

Вольтамперометрия. Характеристики вольтамперограмм, используемые для изучения и определения органических и неорганических соединений. Метрологические характеристики различных вариантов полярографии, возможности и ограничения методов. Инверсионная вольтамперометрия и ее применение в анализе. Прямые и косвенные вольтамперометрические методы.

Кондуктометрия. Прямая низкочастотная кондуктометрия и кондуктометрическое титрование. Использование кондуктометрических датчиков в хроматографии и других методах анализа.

2.2. Физические методы

Взаимодействие вещества с электромагнитным излучением, потоками частиц, магнитным полем.



2.2.1. Методы атомной оптической спектроскопии. Теоретические основы

Атомные спектры эмиссии, поглощения и флуоресценции. Резонансное поглощение. Самопоглощение, ионизация. Аналитические линии. Зависимость аналитического сигнала от концентрации.



Атомно-эмиссионная спектроскопия. Возбуждение проб в пламени, в дуговом и искровом разрядах. Индуктивно связанная плазма. Регистрация спектра. Идентификация и определение элементов по эмиссионным спектрам. Физические и химические помехи. Внутренний стандарт. Подавление мешающих влияний матрицы и сопутствующих элементов. Примеры использования.

Атомно-абсорбционная спектрометрия. Сущность метода. Источники излучения. Пламенная атомизация. Характеристики пламен и их выбор. Электротермическая атомизация. Типы электротермических атомизаторов. Способы подготовки пробы. Помехи: химические и физические. Коррекция помех. Чувствительность и избирательность. Примеры использования.

Атомно-флуоресцентная спектроскопия. Принцип метода. Способы возбуждения атомов (УФ излучение, лазер). Взаимное влияние элементов и устранение этих влияний. Практическое применение.

2.2.2. Методы рентгеновской и электронной спектроскопии. Методы рентгеноспектрального анализа (РСА)

Классификация эмиссионных методов РСА. Закон Мозли. Качественный и количественный анализ. Матричные эффекты. Типы рентгеновских спектрометров. Сравнительная характеристика методов. Практическое применение.

Абсорбционный рентгеноспектральный анализ. Принцип метода, применение.

Рентгеновская фотоэлектронная спектроскопия. Оже-электронная спектроскопия. Основы методов. Практическое применение.



2.2.3. Методы молекулярной оптической спектроскопии. Теоретические основы

Молекулярные спектры поглощения, испускания. Основные законы светопоглощения и испускания. Рассеяние света. Поляризация и оптическая активность. Способы измерения аналитического сигнала.



Спектрофотометрия. Способы определения концентрации веществ. Анализ многокомпонентных систем. Спектроскопия отражения. Достоинства и ограничения методов. Практическое применение.

Люминесцентные методы. Виды люминесценции. Основные закономерности молекулярной люминесценции. Качественный и количественный анализ.

ИК- и рамановская (комбинационного рассеяния) спектроскопия. Колебательные и вращательные спектры. Качественный и количественный анализ. Особенности анализа проб в различном агрегатном состоянии.

Нефелометрия и турбидиметрия. Фотоакустическая спектроскопия. Поляриметрия. Принципы методов и области применения.



2.2.4. Методы масс-спектрометрии

Способы масс-спектрального анализа, регистрация и интерпретация спектров. Качественный и количественный анализ. Метод изотопного разбавления. Хромато-масс-спектрометрия.



2.2.5. Резонансные спектроскопические методы

Магнитно-дипольные переходы. Спин-решеточная и спин-спиновая релаксация. ЯМР-спектроскопия; применение для идентификации соединений. ЭПР-спектроскопия. Применение в анализе.



2.2.6. Ядерно-физические и радиохимические методы

Элементарные частицы. Основные виды радиоактивного распада и ядерных излучений.



Активационный анализ. Нейтронно-активационный анализ. Активация заряженными частицами. Гамма-активационный анализ. Метрологические характеристики. Практическое применение.

Радиохимические методы: методы радиоактивных индикаторов и изотопного разбавления. Общая характеристика и применение.

2.2.7. Методы локального анализа и анализа поверхности

Классификация; физические основы. Достоинства и области применения. Особенности пробоотбора и пробоподготовки. Примеры использования.



2.3. Биологические методы

Сущность методов, их преимущества и ограничения. Индикаторные организмы, их типы. Аналитический сигнал и способы его регистрации. Определение физиологически неактивных соединений (химико-биологические методы). Метрологические характеристики. Области применения.



2.4. Хроматографические методы

2.4.1. Теоретические основы

Основные понятия. Теория равновесной хроматографии. Уравнение Ван-Деемтера. Общие подходы к оптимизации процесса хроматографического разделения веществ. Способы осуществления хроматографического процесса. Особенности капиллярных колонок. Способы элюирования веществ. Детекторы. Классификация хроматографических методов.



2.4.2. Газовая хроматография. Газо-адсорбционная (газо-твердофазная) хроматография

Сущность метода. Изотермы адсорбции. Требования к газам-носителям и адсорбентам. Примеры используемых адсорбентов. Химическое и адсорбционное модифицирование поверхности адсорбента. Влияние температуры на удерживание и разделение. Газовая хроматография с программированным подъемом температуры. Детекторы. Примеры применения.



Газо-жидкостная хроматография. Принцип метода. Объекты исследования. Требования к носителям и неподвижным жидким фазам. Влияние природы жидкой фазы и разделяемых веществ на эффективность разделения.

Высокоэффективная капиллярная газовая хроматография. Сущность метода. Реакционная газовая хроматография. Применение для идентификации веществ, для анализа сложных смесей, объектов окружающей среды.

Сверхкритическая флюидная хроматография. Сущность, особенности, применение.

2.4.3. Жидкостная хроматография. Высокоэффективная жидкостная хроматография

Сущность метода. Требования к адсорбентам и подвижной фазе. Влияние природы и состава элюента на эффективность разделения. Разновидности метода в зависимости от полярности неподвижной фазы: нормально-фазовый и обращенно-фазовый варианты. Выбор условий разделения. Детекторы. Применение для анализа сложных смесей.



Ионообменная хроматография. Неорганические и органические ионообменники и их свойства. Комплексообразующие ионообменники. Кинетика и селективность ионного обмена. Влияние природы и состава элюента на селективность разделения веществ. Примеры применения.

Ионная хроматография. Особенности метода. Двухколоночный и одноколоночный варианты метода. Сорбенты. Детекторы. Примеры применения.

Ион-парная хроматография. Принцип метода. Роль неподвижной фазы и вводимого в элюент противоиона. Области применения.

Эксклюзионная хроматография. Особенности механизма удерживания молекул. Характеристики сорбентов и подвижных фаз. Возможности и примеры применения. Гель-хроматография. Области применения.

Аффинная хроматография. Специфика метода, применяемые адсорбенты. Условия проведения процесса разделения. Области применения.

Тонкослойная хроматография. Сущность метода и области применения.

2.5. Другие методы разделения и концентрирования

Процессы и реакции, лежащие в основе методов. Термодинамические и кинетические характеристики разделения и концентрирования. Классификация методов. Сочетание разделения и концентрирования с методами определения. Принципы выбора метода.



Сорбционные методы. Классификация по механизму взаимодействия вещества с сорбентом, способу осуществления процесса, геометрическим признакам неподвижной фазы. Количественное описание сорбционных процессов. Сорбенты.

Экстракция. Сущность метода. Закон распределения. Основные количественные характеристики. Классификация экстракционных процессов по типу используемого экстрагента, типу образующихся соединений, технике осуществления. Основные типы соединений, используемых в экстракции. Классы экстрагентов.

Осаждение и соосаждение.

Электрохимические методы. Классификация. Электровыделение, цементация, электрофорез, изотахофорез.

3. Метрология и хемометрика

3.1. Метрологические основы химического анализа

Аналитический сигнал. Результат анализа как случайная величина. Погрешности, способы их классификации, основные источники погрешностей.

Систематические погрешности в химическом анализе. Правильность и способы проверки правильности. Законы сложения погрешностей. Релятивизация, контрольный опыт. Рандомизация.

Случайные погрешности в химическом анализе. Генеральная и выборочная совокупности результатов химического анализа. Закон нормального распределения результатов анализа, его проверка. Распределение Пуассона. Статистика малых выборок. Воспроизводимость. Статистические критерии: математическое ожидание (генеральное среднее) и генеральная дисперсия случайной величины, выборочное среднее, дисперсия, стандартное отклонение, доверительная вероятность и доверительный интервал. Сравнение двух (критерий Фишера) и нескольких (критерии Бартлера, Кокрена) дисперсий. Сравнение двух (критерий Стьюдента) и нескольких (критерий Фишера) средних результатов химического анализа.

Чувствительность. Коэффициент чувствительности. Предел обнаружения, нижняя граница определяемых содержаний, их статистическая оценка. Погрешности отдельных стадий анализа и конечного результата. Применение дисперсионного анализа для оценки погрешностей отдельных стадий и операций химического анализа. Проверка значимости выборочного коэффициента корреляции. Использование корреляционного анализа для проверки независимости двух аналитических методик.

Применение регрессионного анализа для построения градуировочных зависимостей. Нахождение содержания вещества по градуировочной зависимости, статистическая оценка результата. Математическое планирование и оптимизация аналитического эксперимента с использованием дисперсионного и многомерного регрессионного анализа. Стандартные образцы. Аттестация и стандартизация методик. Аккредитация аналитических лабораторий.



3.2. Компьютерные методы в аналитической химии

Пути использования ЭВМ в аналитической химии. Многомерные данные в химическом анализе. Первичная обработка данных. Коррелированные данные; понятие об анализе главных компонентов (факторном анализе). Многомерные регрессия и градуировка. Понятие о методах классификации и распознавания образов, кластерном анализе. Построение и использование нелинейных градуировочных зависимостей. Фурье-преобразование, его использование для фильтрации шумов и снижения пределов обнаружения. Расчеты химических равновесий.



4. Автоматизация анализа

Автоматизация лабораторного анализа и производственного контроля, периодического, дискретного анализа и непрерывного анализа в потоке. Автоматизированные приборы, системы и комплексы, автоматы-анализаторы для лабораторного и производственного анализа, роботы. Примеры современных высокоэффективных аналитических приборов-автоматов. Проточно-инжекционный анализ.



5. Анализ конкретных объектов

5.1. Аналитический цикл и стадии анализа

Выбор метода и схемы анализа, отбор пробы, подготовка пробы (разложение, разделение, концентрирование и другие операции), получение аналитической формы, измерение аналитического сигнала, обработка результатов измерений.



5.2. Пробоотбор и пробоподготовка

Представительность пробы. Отбор проб гомогенного и гетерогенного состава; средних проб твердых, жидких и газообразных веществ; токсичных и радиоактивных проб. Основные операции перевода пробы в форму, удобную для анализа.



5.3. Основные объекты. Геологические объекты

Анализ силикатов, карбонатов, железных и полиметаллических руд. Металлы, сплавы и продукты металлургической промышленности (анализ черных, цветных, редких, благородных металлов и их сплавов). Материалы атомной промышленности (определение тория, урана, плутония, трансплутониевых элементов и осколков деления. Неорганические соединения. Анализ минеральных удобрений, неорганических веществ высокой чистоты. Органические вещества (природные и синтетические, элементоорганические, полимеры, продукты нефтепереработки, белки, жиры, углеводы; пестициды). Элементный анализ органических веществ.

Химические и физические методы функционального анализа. Молекулярный анализ органических объектов. Анализ высокомолекулярных веществ, органических материалов.

Биологические и медицинские объекты. Санитарно-гигиенический контроль. Клинический анализ. Пищевые продукты. Определение основных компонентов и примесей.

Объекты окружающей среды. Основные источники загрязнений и основные загрязнители; методы их определения. Определение суммарных показателей (ХПК, БПК и др.). Тест-методы.

Специальные объекты: токсичные и радиоактивные, взрывчатые и легковоспламеняющиеся вещества, газы, космические и археологические объекты.
Раздел 2. Органическая химия

I. Закономерности строения и реакционного поведения органических соединений

1. Химическая связь и строение органических соединений

1.1. Современные представления о природе химической связи.

Электронные представления о природе связей. Типы связей в органической химии. Гибридизация атомов углерода и азота. Электронные эффекты. Электроотрицательность атомов и групп.

Основные положения квантовой химии. Атомные и молекулярные орбитали. Приближение МО-ЛКАО. Метод МО Хюккеля и более строгие квантово-химические методы расчета. Понятие о полуэмпирических методах, основанных на приближении Хартри—Фока (MNDO, AM1, PM3 и др.). Методы ab initio. Метод функционала плотности (DFT). Компромиссные подходы.

Теория возмущений МО. Возмущения первого и второго порядков. Индексы реакционной способности. Метод граничных орбиталей. Зарядовый и орбитальный контроль органических реакций.

Понятие о резонансе (сопряжении) в классической и квантовой химии. Сопряжение в методе МО Хюккеля. Концепция ароматичности. Правило Хюккеля. Мезоионные соединения. Антиароматичность.

1.2. Стереохимия. Пространственное строение органических молекул. Пространственное взаимодействие несвязанных атомов и групп, ван-дер-ваальсовы радиусы.

Понятие о конформации молекулы. Вращение вокруг связей: величины и симметрия потенциальных барьеров. Факторы, определяющие энергию конформеров. Влияние эффектов сопряжения на стабильность конформеров. Номенклатура конформеров. Угловое напряжение и другие типы напряжения в циклических системах. Средние циклы и трансаннулярные взаимодействия. Инверсия циклов и азотсодержащих соединений.

Связь конформации и реакционной способности. Принцип Кертина—Гаммета. Стерический и стереоэлектронный контроль реакций. Стереоселективность и стереоспецифичность.

Пространственное строение этиленовых и диеновых систем. Номенклатура геометрических изомеров. Конформация диенов и триенов. Атропоизомерия.

Энантиомерия. Асимметрия и хиральность. Эквивалентные, энантиотопные и диастереотопные группы; их проявление в химическом поведении молекул в хиральных и ахиральных средах и спектрах ЯМР. Номенклатура оптических антиподов. Неуглеродные атомы как центры хиральности.

Способы получения и разделения энантиомеров. Оптическая чистота и методы ее определения. Определение абсолютной и относительной конфигурации. Понятие о дисперсии оптического вращения и круговом дихроизме.



2. Общие принципы реакционной способности

2.1. Классификация реакций по типу образования и разрыва связей в лимитирующей стадии, по типу реагента и по соотношению числа молекул реагентов и продуктов.

Теория переходного состояния. Гиперповерхность потенциальной энергии, координата и энергетический профиль реакции. Термодинамические параметры активации. Кинетические уравнения основных типов реакций. Методы экспериментального изучения кинетики и механизмов реакций. Метод стационарного состояния (принцип Боденштейна). Постулат Хэммонда.

Эмпирический (экстратермодинамический) подход к реакционной способности. Корреляционные уравнения, принцип линейности свободных энергий Гиббса. Уравнения Гаммета и Тафта. Связь параметров корреляционных уравнений с механизмом реакций.

Принцип ЖМКО; его обоснование на основе теории возмущений МО.



2.2. Количественная теория кислот и оснований. Кислоты Бренстеда и Льюиса. Кислотно-основное равновесие. Понятие рН. Кинетическая и термодинамическая кислотность. Уравнение Бренстеда. Общий и специфический кислотно-основный катализ. Суперкислоты. Функции кислотности. Постулат Гаммета.

2.3. Влияние среды на скорости и равновесие органических реакций. Специфическая и неспецифическая (универсальная) сольвация. Клеточный эффект. Водородная связь. Классификация и шкалы параметров растворителей. Влияние сольвации на скорость и равновесие органических реакций. Уравнения Уинстейна и Грюнвальда, Коппеля-Пальма. Кислотность и основность в газовой фазе.

Ассоциация ионов. Типы ионных пар и доказательства их существования. Влияние ассоциации ионов на их реакционную способность. Уравнение Акри.

Межфазный катализ. Краун-эфиры, криптанды, поданды, катализаторы межфазного переноса. Понятие о супрамолекулярной химии.

2.4. Основные типы интермедиатов.

Карбениевые ионы (карбокатионы). Генерация карбокатионов в растворах и в газовой фазе. Влияние структурных и сольватационных факторов на стабильность карбокатионов. Строение карбокатионов. Понятие о неклассических ионах. Основные типы реакций карбокатионов и области их синтетического использования. Скелетные перегруппировки и гидридные сдвиги в карбокатионах.

Карбанионы и СН-кислоты. Влияние структурных и эффектов среды на стабилизацию карбанионов. Основные реакции карбанионов, анионные перегруппировки. Амбидентные и полидентные анионы. Карбены. Электронная структура, синглетное и триплетное состояние карбенов. Методы генерации карбенов и использование их в органическом синтезе. Нитрены, их генерация, строение и свойства.

Свободные радикалы и ион-радикалы. Методы генерирования радикалов. Электронное строение и факторы стабилизации свободных радикалов. Типы стабильных свободных радикалов. Основы методов ЭПР и ХПЯ. Катион- и анион-радикалы. Методы генерирования и свойства. Основные реакции ион-радикалов. Комплексы с переносом заряда.



3. Основные типы органических реакций и их механизмы

3.1. Нуклеофильное замещение в алифатическом ряду. Механизмы SN1 и SN2, смешанный ионно-парный механизм. Влияние структуры субстрата и полярности растворителя на скорости и механизм реакции. Анхимерное содействие и синартетическое ускорение, участие соседних групп, перегруппировки в ходе нуклеофильного замещения. Корреляционные уравнения Суэйна—Скотта и Эдвардса.

3.2. Нуклеофильное замещение при кратной углерод-углеродной связи и в ароматическом ядре. Типичные механизмы нуклеофильного замещения у sp2-гибридного атома углерода. Винильный катион. Моно- и бимолекулярные процессы нуклеофильного замещения в ароматическом ряду. Катализ переходными металлами. Нуклеофильное замещение в нитропроизводных бензола. Нуклеофильное замещение водорода (викариозное замещение). Комплексы Мейзенхеймера. Нуклеофильное замещение в ароматических гетероциклах. Кине-замещение.

3.3. Электрофильное замещение у атома углерода. Механизмы замещения SE1, SE2, SEi. Нуклеофильный катализ электрофильного замещения. Влияние структуры субстрата и эффектов среды на скорость и направление реакций. Замещение у олефинового атома углерода и в ароматическом кольце. Генерирование электрофильных реагентов. Правила ориентации и их молекулярно-орбитальная интерпретация. Электрофильное замещение других групп, кроме водорода. Ипсо-замещение. Кинетические изотопные эффекты.

3.4. Реакции элиминирования (отщепления). Механизмы гетеролитического элиминирования Е1 и Е2. Стереоэлектронные требования и стереоспецифичность при Е2-элиминировании. Термическое син-элиминирование.

3.5. Присоединение по кратным углерод-углеродным связям. Электрофильное присоединение. Сильные и слабые электрофилы, механизм и стереохимия присоединения, регио- и стереоселективность реакций. Присоединение к сопряженным системам. Катионная полимеризация олефинов. Нуклеофильное присоединение по кратным связям С С. Механизм процесса. Влияние структуры нуклеофила и субстрата и эффектов среды на скорость и направление реакции. Реакция Михаэля. Анионная полимеризация олефинов.

3.6. Нуклеофильное присоединение к карбонильной группе: присоединение оснований, включая карбанионы, металлорганических соединений. Реакция Анри. Кислотный и основной катализ присоединения. Енолизация альдегидов и кетонов. Механизм этерификации кислот и получение ацеталей. Конденсации карбонильных соединений, карбоновых кислот и их производных. Нуклеофильное присоединение к альд- и кетиминам и карбоний- иммониевым ионам (реакция Манниха).

3.7. Перегруппировки в карбокатионных интермедиатах. Классификация перегруппировок: пинаколиновая и ретропинаколиновая, перегруппировка Демьянова. Перегруппировка Вагнера—Мейервейна. Перегруппировки с миграцией к атому азота (Гофмана, Курциуса, Бекмана). Реакция Байера—Виллигера.

3.8. Радикальные и ион-радикальные реакции присоединения, замещения и элиминирования. Цепные радикальные реакции. Полимеризация, теломеризация, реакции автоокисления. Ингибиторы, инициаторы и промоторы цепных реакций. Редокс-реакции. Электросинтез органических соединений.

3.9. Согласованные реакции. Концепция сохранения орбитальной симметрии и правила Вудворда—Гофмана. Электроциклические реакции, сигматропные перегруппировки. Перициклические реакции (2+2) и (2+4)-циклоприсоединения. 1,3-диполярное циклоприсоединение.
II. Синтетические методы в органической химии и химические свойства соединений

1. Алканы

1.1. Методы синтеза: гидрирование непредельных углеводородов, синтез через литийдиалкилкупраты, электролиз солей карбоновых кислот (Кольбе), восстановление карбонильных соединений.

1.2. Реакции алканов: галогенирование, сульфохлорирование. Селективность радикальных реакций и относительная стабильность алкильных радикалов. Термический и каталитический крекинг. Ионные реакции алканов в суперкислых средах (дейтероводородный обмен и галогенирование).

1.3. Циклоалканы. Методы синтеза и строение циклопропанов, циклобутанов, циклопентанов и циклогексанов. Синтез соединений со средним размером цикла (ацилоиновая конденсация). Типы напряжения в циклоалканах и их подразделение на малые, средние и макроциклы. Конформационный анализ циклогексана, моно- и дизамещенных циклогексанов; аксиальные и экваториальные связи. Влияние конформационного положения функциональных групп на их реакционную способность в ряду производных циклогексана на примере реакций замещения, отщепления и окисления. Реакции расширения и сужения циклов при дезаминировании первичных аминов (Демьянов). Сужение цикла в реакции Фаворского ( -галогенциклоалканоны).



2. Алкены

2.1. Методы синтеза: элиминирование галогеноводородов из алкилгалогенидов, воды из спиртов. Синтез алкенов из четвертичных аммониевых солей (Гофман), N-окисей третичных аминов (Коуп). Стереоселективное восстановление алкинов. Стереоселективный синтез цис- и транс-алкенов из 1,2-диолов (Кори, Уинтер). Региоселективный синтез алкенов из тозилгидразонов (Шапиро). Реакция Виттига как региоспецифический метод синтеза алкенов. Основания, используемые в реакции. Стабилизированные и нестабилизированные илиды. Стереохимия реакции. Хемоселективность реакции Виттига. Получение эфиров алкилфосфоновых кислот (Михаэль—Арбузов) и их использование в синтезе алкенов (вариант Виттига—Хорнера—Эммонса). Область применения реакции.

2.2. Реакции алкенов: электрофильное присоединение галогенов, галогеноводородов, воды. Процессы, сопутствующие AdE-реакциям: сопряженное присоединение, гидридные и алкильные миграции. Гидрокси- и алкоксимеркурирование. Регио- и стереоселективное присоединение гидридов бора. Региоспецифические гидроборирующие агенты. Превращение борорганических соединений в алканы, спирты, алкилгалогениды. Окисление алкенов до оксиранов (Прилежаев). Понятие об энантиомерном эпоксидировании алкенов по Шарплесу (в присутствии изопропилата титана и эфира L-(+)-винной кислоты). Цис-гидроксилирование алкенов по Вагнеру (KMnO4) и Криге (OsO4). Окисление алкенов галогеном в присутствии солей серебра: цис-(Вудворт) и транс-(Прево) гидроксилирование. Радикальные реакции алкенов: присоединение бромистого водорода по Харашу, сероводорода и тиолов. Аллильное галогенирование по Циглеру. Внутримолекулярная радикальная циклизация 6-галогеналканов при действии трибутилоловогидрида. Гетерогенное гидрирование: катализаторы, каталитические яды. Гидрогенолиз связей углерод-гетероатом. Гомогенное гидрирование: катализаторы, механизм. Региоселективность гомогенного гидрирования. Присоединение синглетных и триплетных карбенов к алкенам. Карбеноиды, их взаимодействие с алкенами.

3. Алкины

3.1. Методы синтеза: отщепление галогеноводородов из дигалогенидов, реакция 1,2-дигидразонов с оксидом ртути (II) и тетраацетатом свинца. Усложнение углеродного скелета алкинов: реакции ацетиленидов натрия и меди, магнийорганических производных алкинов. Конденсация алкинов-1 с кетонами и альдегидами (Фаворский, Реппе).

3.2. Реакции алкинов. Галогенирование, гидрогалогенирование, гидратация (Кучеров). Ацетилен-алленовая изомеризация. Смещение тройной связи в терминальное положение. Окислительная конденсация терминальных алкинов в присутствии солей меди.

4. Алкадиены

4.1. Методы синтеза 1,3-диенов: дегидрирование алканов, синтез Фаворского—Реппе, кросс-сочетание на металлокомплексных катализаторах.

4.2. Реакции 1,3-диенов: галогенирование и гидрогалогенирование, 1,2- и 1,4-присоединение. Реакция Дильса—Альдера с алкенами и алкинами, ее типы: карбо-реакция, гетеро-реакция. Диены и диенофилы. о-хинодиметаны в качестве диенов. Катализ в реакции Дильса—Альдера. Стереохимия реакции. Региоселективность [4+2]-циклоприсоединения в случае несимметричных диенов и диенофилов. Ретро-реакция Дильса—Альдера. Применение силоксидиенов в синтезе алициклов и гетероциклов.

5. Спирты и простые эфиры

5.1. Методы синтеза одноатомных спиртов: из алкенов, карбонильных соединений, сложных эфиров и карбоновых кислот.

5.2. Реакции одноатомных спиртов: замещение гидроксильной группы в спиртах на галоген (под действием галогеноводородов, галогенидов фосфора и хлористого тионила). Реагенты регио- и стереоселективного замещения (комплексы трифенилфосфина с галогенами и четыреххлористым углеродом). Дегидратация спиртов. Окисление первичных и вторичных спиртов. Реагенты окисления на основе соединений хрома (VI), диоксида марганца и диметилсульфоксида (методы Моффета и Сверна).

5.3. Методы синтеза и реакции двухатомных спиртов. Окислительное расщепление 1,2-диолов (иодная кислота, тетраацетат свинца). Пинаколиновая перегруппировка.

5.4. Методы синтеза простых эфиров: реакция Вильямсона, алкоксимеркурирование спиртов.

5.5. Реакции простых эфиров: образование оксониевых солей, расщепление кислотами.

5.6. Гидропероксиды. Краун-эфиры, их получение и применение в синтезе.

5.7. Оксираны. Способы получения. Раскрытие оксиранового цикла под действием электрофильных и нуклеофильных агентов.



6. Альдегиды и кетоны

6.1. Методы получения альдегидов и кетонов: из спиртов, производных карбоновых кислот, алкенов (озонолиз), алкинов (гидроборирование), на основе металлорганических соединений. Ацилирование и формилирование аренов.

6.2. Реакции альдегидов и кетонов: присоединение воды, спиртов, тиолов. 1,3-Дитианы и их использование в органическом синтезе. Обращение полярности C=O-группы. Получение бисульфитных производных и циангидринов. Взаимодействие альдегидов и кетонов с илидами фосфора (Виттиг) и серы. Взаимодействие альдегидов и кетонов с азотистыми основаниями. Перегруппировка Бекмана. Взаимодействие альдегидов и кетонов с металлорганическими соединениями. Енамины, их алкилирование и ацилирование. Альдольно-кротоновая конденсация альдегидов и кетонов как метод усложнения углеродного скелета. Направленная альдольная конденсация разноименных альдегидов с использованием литиевых и кремниевых эфиров енолов. Конденсация альдегидов и кетонов с малоновым эфиром и другими соединениями с активной метиленовой группой (Кневенагель). Аминометилирование альдегидов и кетонов (Манних). Бензоиновая конденсация. Конденсация с нитроалканами (Анри). Восстановление альдегидов и кетонов до спиртов, реагенты восстановления. Дезоксигенирование альдегидов и кетонов: реакции Клемменсена и Кижнера—Вольфа. Окисление альдегидов, реагенты окисления. Окисление кетонов надкислотами по Байеру—Виллигеру.

6.3. α , β -непредельные альдегиды и кетоны. Методы получения: конденсации, окисление аллиловых спиртов. Реакция 1,2- и 1,4-присоединения литийорганических соединений, триалкилборанов, диалкил- и диарилкупратов, цианистого водорода, галогеноводородов. Эпоксидирование α , β -непредельных кетонов. Сопряженное присоединение енолятов и енаминов к α , β -непредельным альдегидам и кетонам (Михаэль). Доноры и акцепторы Михаэля. Катализаторы реакции, ее обратимость. Ретро-реакция. Реакции анелирования. Вариант Робинсона. Использование хлоркетонов и производных оснований Манниха.  -силилированные винилкетоны (Сторк) и енамины в реакциях анелирования.



7. Карбоновые кислоты и их производные

7.1. Методы синтеза кислот: окисление первичных спиртов и альдегидов, алкенов, алкинов, алкилбензолов, гидролиз нитрилов и других производных карбоновых кислот, синтез на основе металлорганических соединений, синтезы на основе малонового эфира.

7.2. Реакции карбоновых кислот: галогенирование по Гелю-Фольгардту-Зелинскому, пиролитическая кетонизация, электролиз по Кольбе, декарбоксилирование по Хунсдиккеру.

7.3. Методы получения производных карбоновых кислот: галогенангидридов, ангидридов, сложных эфиров, нитрилов, амидов. Кетены, их получение и свойства.

7.4. Реакции производных карбоновых кислот: взаимодействие с нуклеофильными реагентами (вода, спирты, аммиак, амины, металлорганические соединения). Восстановление галогенангидридов до альдегидов по Розенмунду и комплексными гидридами металлов. Взаимодействие галогенангидридов с диазометаном (реакция Арндта-Эйстерта). Восстановление сложных эфиров до спиртов и альдегидов, нитрилов – до аминов и альдегидов комплексными гидридами металлов. Малоновая кислота: синтезы с малоновым эфиром, реакция Михаэля, конденсации с альдегидами (Кневенагель). Сложноэфирная и ацилоиновая конденсации. Особенности эфиров двухосновных кислот (образование карбоциклов) в этих реакциях. Сложные эфиры  -галогенокислот в реакциях Реформатского. Ацетоуксусный эфир и его использование в синтезе.

7.5. Методы синтеза α , β -непредельных карбоновых кислот: дегидратация гидроксикислот, реакции Кневенагеля, Виттига, Перкина (синтез коричных кислот). Реакции присоединения по двойной связи. Бромо- и иодо-лактонизация α , β -непредельных карбоновых кислот.



8. Синтетическое использование реакций электрофильного замещения в ароматическом ряду

Классификация реакций ароматического электрофильного замещения. Влияние заместителей в бензольном кольце на скорость и направление электрофильного замещения. Согласованная и несогласованная ориентация.

8.1. Нитрование. Нитрующие агенты. Механизм реакции нитрования. Нитрование бензола и его замещенных. Нитрование бифенила, нафталина, ароматических аминов и фенола. Получение полинитросоединений. Ипсо-атака и ипсо-замещение в реакциях нитрования. Восстановление нитро-группы в различных условиях.

8.2. Галогенирование. Галогенирующие агенты. Механизм галогенирования аренов и их производных.

8.3. Сульфирование. Сульфирующие агенты. Кинетический и термодинамический контроль реакции (сульфирование фенола и нафталина). Превращение сульфогруппы.

8.4. Алкилирование аренов по Фриделю-Крафтсу. Алкилирующие агенты. Механизм реакции. Полиалкилирование. Побочные процессы: изомеризация алкилирующего агента и конечных продуктов. Синтез диарил- и триарилметанов.

8.5. Ацилирование аренов. Ацилирующие агенты. Механизм реакции. Региоселективность ацилирования. Особенности ацилирования фенолов, перегруппировка Фриса. Формилирование по Гаттерману-Коху, Гаттерману и Вильсмейеру. Область применения этих реакций.

9. Нитросоединения и амины

9.1. Нитроалканы. Синтез из алкилгалогенидов. Кислотность и таутомерия нитроалканов. Конденсация с карбонильными соединениями (Анри). Восстановление в амины. Превращение вторичных нитроалканов в кетоны (Мак-Марри).

9.2. Методы получения аминов: алкилирование аммиака и аминов по Гофману, фталимида калия (Габриэль), восстановление азотсодержащих производных карбонильных соединений и карбоновых кислот, нитросоединений, алкилазидов. Перегруппировки Гофмана и Курциуса. Синтез аминов с третичным алкильным радикалом (Риттер), взаимодействие альдегидов и кетонов с формиатом аммония (Лейкарт).

9.3. Реакции аминов. Алкилирование и ацилирование. Термическое разложение гидроксидов тетраалкиламмония по Гофману. Окисление третичных аминов до N-оксидов, их термолиз (Коуп). Получение нитронов из N,N-диалкилгидроксиаминов. Реакции [3+2]-циклоприсоединения нитронов (образование пятичленных азотистых гетероциклов).



10. Методы синтеза и реакции ароматических гетероциклических соединений

10.1. Пятичленные гетероциклы с одним гетероатомом. Фуран, пиррол, тиофен. Синтез из 1,4-дикарбонильных соединений (Пааль—Кнорр). Синтез пирролов по Кнорру и по Ганчу. Синтез 3,4-дизамещенных тиофенов по Хинсбергу. Реакции электрофильного замещения в пятичленных ароматических гетероциклах: нитрование, сульфирование, галогенирование, формилирование, ацилирование. Индолл. Синтез производных индола из фенилгидразина и кетонов (Фишер). Синтез индола и его производных из 2-ациламинотолуолов (Маделунг). Реакции электрофильного замещения в пиррольном кольце индола: нитрование, формилирование, галогенирование.

10.2. Шестичленные ароматические гетероциклы с одним гетероатомом. Пиридин и хинолин. Синтез производных пиридина по Ганчу . Синтез частично гидрированных производных пиридина путем [4+2]-циклоприсоединения (гетеро-реакция Дильса—Альдера). Синтез хинолина и замещенных хинолинов из анилинов по Скраупу и Дебнеру—Миллеру. Реакции пиридина и хинолина с алкилгалогенидами. Окисление и восстановление пиридина и хинолина. Реакции электрофильного замещения в пиридине и хинолине: нитрование, сульфирование, галогенирование. N-окиси пиридина и хинолина и их использование в реакции нитрования. Нуклеофильное замещение атомов водорода в пиридине и хинолине в реакциях с амидом натрия (Чичибабин) и фениллитием. 2- и 4-метилпиридины и хинолины как метиленовые компоненты в конденсациях с альдегидами.



Поделитесь с Вашими друзьями:
  1   2   3   4


База данных защищена авторским правом ©ekollog.ru 2017
обратиться к администрации

войти | регистрация
    Главная страница


загрузить материал