Производственная санитария



страница4/11
Дата01.05.2016
Размер1.55 Mb.
ТипКонспект
1   2   3   4   5   6   7   8   9   10   11

Понятие производственной травмы и производственного травматизма

Производственная травма — это внезапное повреждение организма человека (ранение, ушиб, ожог, острое отравление), происшедшее в производственной обстановке. Повреждение или нарушение нормальной деятельности человеческого организма, происшедшие в течение длительного времени работы во вредных условиях производства, называют профессиональными заболеваниями. К ним, например, относятся заболевание легких (силикоз), от воздействия пыли кремния, притупление слуха (глухота) при работе в шумных цехах, заболевание глаз от воздействия ультрафиолетовых лучей и т. д.

Провести четкую грань между профессиональными заболеваниями и производственными травмами очень трудно, так как одни и те же производственные опасности или вредности могут приводить и к заболеваниям, и к травмам. Например, ионизирующие излучения при медленном воздействии могут привести к лейкоцитозу (заболевание крови), а при кратковременном облучении мощным источником—к внезапному лучевому поражению, т. е. к производственной травме.

Производственная травма (трудовое увечье) - это следствие действия на организм различных внешних, опасных производственных факторов. Чаще производственная травма - это результат механического воздействия при наездах, падениях или контакте с механический оборудованием.

Травмирование возможно вследствие воздействий:



    • химических факторов, например, ядохимикатов, в виде отравлений или ожогов;

    • электрического тока - ожоги, электрические удары и др.;

    • высокой или низкой температуры (ожоги или обморожения);

    • сочетания различных факторов.

Производственный травматизм - это совокупность несчастных случаев на производстве (предприятии).

Различают несколько причин производственного травматизма



Технические, возникающие вследствие конструкторских недостатков, неисправностей машин, механизмов, несовершенства технологического процесса, недостаточной механизации и автоматизации тяжёлых и вредных работ.

Санитарно - гигиенические, связанные с нарушением требований санитарных норм (например, по влажности, температуре), отсутствием санитарно-бытовых помещений и устройств, недостатками в организации рабочего места и др.

Организационные, связанные с нарушением правил эксплуатации транспорта и оборудования, плохой организацией погрузочно-разгрузочных работ, нарушением режима труда и отдыха (сверхурочные работы, простои и т.п.), нарушением правил техники безопасности, несвоевременным инструктажем, отсутствием предупредительных надписей а др.

Психофизиологические, связанные с нарушением работниками трудовой дисциплины, опьянением на рабочем месте, умышленным самотравмированием, переутомлением, плохим здоровьем и др.

Роль и состав атмосферы

Атмосфера – это наиболее легкая оболочка нашей планеты, граничащая с космическим пространством.

Без этой оболочки на Земле было бы невозможно жить. Всякое живое существо всю сою жизнь на Земле и в воде дышит, питая кровь кислородом. Дышат также и растения, поглощая углекислый газ и выделяя кислород. Газовая оболочка предохраняет Землю от чрезмерного нагревания и охлаждения, т.к. воздух (в виду наличия в нем углекислого газа) легко пропускает солнечные лучи, нагревающие землю, и не пропускает тепловые излучение. Поэтому на Земле не бывает резких переходов от жары к холоду. Если бы не было воздушной оболочки Земли, то в течение суток температура менялась бы до 200°С. Благодаря атмосфере средняя температура у поверхности земли составляет 15°С.

Атмосфера является надежным щитом, спасающим живые организмы земли от губительных ультрафиолетовых, рентгеновских и космических излучений, частично поглощая, частично рассеивая в верхних слоях все вредные излучения.

Велико значение атмосферы в распространении влаги в виду присутствия туманов и переноса дождевых облаков. В среде атмосферы хорошо распространяется звук. Не будь этого, на Земле царила бы мертвая тишина, была бы невозможна человеческая речь.

Атмосфера – газовая оболочка Земли. Ее масса около 5,9*1015 т. Она имеет слоистое строение и состоит из нескольких сфер, между которыми располагаются переходные слои – паузы. В сферах изменяется количество воздуха и его температура.

Наиболее плотный слой воздуха, прилегающий к земной поверхности, носит название тропосферы. Протяженность ее по высоте в средних широтах составляет 10-12 км над уровнем моря, на полюсах – 7-10, над экватором 16-18 км. В тропосфере сосредоточено более 4/5 массы земной атмосферы. Из-за неравномерности нагрева земной поверхности в ней образуются мощные вертикальные токи воздуха, отмечаются неустойчивость температуры, относительной влажности, давления и т.д. Температура воздуха в тропосфере по высоте уменьшается на 0,6° на каждые 100 м и колеблется от +40 до –50°С.

Выше тропосферы находится стратосфера. Между ними расположена тропопауза. Стратосфера имеет протяженность около 40 км. Воздух в ней разрежен, влажность невысокая. Температура воздуха от границы тропосферы до высоты 30 км постоянная (около –50°С), а затем начинает повышаться и на высоте 50 км достигает 10°С. В стратосфере под воздействием космического излучения и коротковолновой части ультрафиолетового излучения Солнца молекулы воздуха ионизируются, в результате чего образуется озон. Озоновый слой находится на высоте 25-40 км.

Стратопауза отделяет стратосферу от лежащей выше мезосферы. Выше мезосферы расположена термосфера (или ионосфера), между которыми имеется мезопауза. Для термосферы характерно непрерывное повышение температуры с увеличением высоты. На высоте 150 км температура достигает 200-240 °С, на уровне 200 км – 500°С, а на высоте 500-600 км превышает 1500°С. В термосфере газы очень разрежены. Молекулы их движутся с большой скоростью, но редко сталкиваются между собой и поэтому не могут вызвать даже небольшого нагревания находящегося здесь тела.

Атмосфера состоит в основном из кислорода и азота.

Газовый состав атмосферы (объемная доля в %) следующий:

– азот – 78,09 %;

– кислород – 20,94 %;

– аргон – 0,93 %;

– диоксид углерода – 0,033 %;

– неон – 1,8*10-3 %;

– гелий – 5,2*10-4 %

– водород – 5*10-5 %

– озон – 2*10-6 %

– криптон – 1*10-4 %

– ксенон – 8*10-6 %

– оксид азота – 2,5*10-4 %

– метан – 1,5*10-4 %

– диоксид азота – 1,5*10-4 %

– диоксид серы – 2*10-8 %

– оксид углерода – 1*10-5 %

– аммиак – 1*10-6 %

На высоте 110-120 км кислород почти весь становится атомарным. Предполагается, что выше 400-500 км и азот находится в атомарном состоянии. Кислородно-азотный состав сохраняется примерно до высоты 400-600 км. Выше 600 км в атмосфере начинает преобладать гелий. Гелиевая корона Земли простирается примерно до высоты 1600 км, а выше 2000-3000 км преобладает водород.



Значения почвы для населения планеты

Важным этапом в развитии биосферы явилось возникновение такой ее части, как почвенный покров. С образованием достаточно развитого почвенного покрова биосфера - становится целостной завершенной системой, все части которой тесно взаимосвязаны и зависят друг от друга. Значение почвы: Почвенный покров является важнейшим природным образованием. Его роль в жизни общества определяется тем, что почва представляет собой основной источник продовольствия, обеспечивающий 95-97% продовольственных ресурсов для населения планеты. Площадь земельных ресурсов мира составляет 129 млн. км2 или 86,5% площади суши. Пашня и многолетние насаждения в составе сельскохозяйственных угодий занимают около 15 млн. км2 (10% суши), сенокосы и пастбища-- 37,4 млн. км2 (25% суши). Общая пахотно - пригодность земель оценивается различными исследователями по-разному: от 25 до 32 млн. км2.Представления о почве, как о самостоятельном природном теле с особыми свойствами появились лишь в конце XIX в., благодаря В. В. Докучаеву, -- основоположнику современного почвоведения. Он создал учение о зонах природы, почвенных зонах, факторах почвообразования. Структура почвы: Почва -- это особое природное образование, обладающее рядом свойств, присущих живой и неживой природе. Почва -- это та среда, где взаимодействует большая часть элементов биосферы: вода, воздух, живые организмы. По-чву можно определить как продукт выветривания, реорганизации и формирования верхних слоев земной коры под влиянием живых организмов, атмосферы и обменных процессов. Почва состоит из нескольких горизонтов (слоев с одинаковыми признаками), возникающих в результате сложного взаимодействия материнских горных пород, климата, растительных и животных организмов (особенно бактерий), рельефа местности. Для всех почв характерно умень-шение содержания органических веществ и живых организмов от верхних горизонтов почв к нижним. Горизонт A l -- темно-окрашенный, содержащий гумус, обогащен минеральными веществами и имеет для биогенных процессов наибольшее значение. Горизонт А 2 -- элювиальный слой, имеет обычно пепельный, светло-серый или желтовато-серый цвет. Горизонт В -- элювиальный слой, обычно плотный, бурый или коричневой окраски, обогащенный коллоидно-дисперсными минералами. Горизонт С -- измененная почвообразующими процессами материнская порода Горизонт В -- исходная порода. Поверхностный горизонт состоит из остатков растительности, составляющих основу гумуса, из-быток или недостаток которого определяет плодородие почвы. Гумус -- органическое вещество, наиболее устойчивое к разложению и поэтому сохраняющееся после того, как основной процесс разложения уже завершен. Постепенно гумус также минерализуется до неорганического вещества. Перемешивание гумуса с почвой придает ей структуру. Обогащенный гумусом слой называется пахотным, а нижележащий слой -- подпахотным. Основные функции гумуса' сводятся к серии сложных обменных процессов, в которых участвуют не только азот, кислород, углерод и вода, но и различные минеральные соли, присутствующие в почве. Под гумусовым горизонтом располагается подпочвенный слой, соответствующий выщелоченной части почвы, и горизонт, отвечающий материнской породе. Почва состоит из трех фаз: твердой, жидкой и газообразной. В твердой фазе преобладают минеральные образования и различные органические вещества, в том числе гумус, или перегной, а также почвенные коллоиды, имеющие органическое, минеральное или органоминеральное происхождение. Жидкую фазу почвы, или почвенный раствор, составляет вода с растворенными в ней органическими и минеральными соединениями, а также газами. Газовую фазу почвы составляет "почвенный воздух", включающий газы, заполняющие свободные от воды поры. Важным компонентом почвы, способствующим изменению ее физико-химических свойств, является ее биомасса, включающая кроме микроорганизмов (бактерии, водоросли, грибы, одноклеточные) еще и червей и членистоногих. Образование почв происходит на Земле с момента возникновения жизни и зависит от многих факторов: Субстрат, на котором образуются почвы. От характера материнских пород зависят физические свойства почв (пористость, водоудерживающая способность, рыхлость и т. д.). Они определяют водный и тепловой режим, интенсивность перемешивания веществ, минералогический и химический составы, первоначальное содержание элементов питания, тип почвы Растительность -- зеленые растения (основные создатели первичных органических веществ). Поглощая из атмосферы углекислоту, из почвы воду и минеральные вещества, используя энергию света, они создают органические соединения, пригодные для питания животных. С помощью животных, бактерий, физических и химических воздействий органическое вещество разлагается, превращаясь в почвенный гумус. Зольные вещества наполняют минеральную часть почвы. Неразложившийся растительный материал создает благоприятные условия для действия почвенной фауны и микроорганизмов (устойчивый газообмен, тепловой режим, влажность). Животные организмы, выполняющие функцию преобразования органического вещества в почву. Сапрофаги (земляные черви и Др.), питающиеся мертвыми органическими веществами, влияют на содержание гумуса, мощность этого горизонта и структуру почвы. Из наземного животного мира на почвообразование наиболее интенсивно влияют все виды грызунов и травоядные животные.

Микроорганизмы (бактерии, одноклеточные водоросли, вирусы) разлагающие сложные органические и минеральные вещества на более простые, которые в дальнейшем могут использоваться самими микроорганизмами и высшими растениями. Одни группы микроорганизмов участвуют в превращениях углеводов и жиров, другие -- азотистых соединений. Бактерии, поглощающие молекулярный азот воздуха, называют азотофиксирующими. Благодаря их деятельности, атмосферный азот могут использовать (в виде нитратов) другие живые организмы. Почвенные микроорганизмы принимают участие в разрушении токсических продуктов обмена высших растений, животных и самих микроорганизмов в синтезе витаминов, необходимых для растений и почвенных животных. Климат, влияющий на тепловой и водный режимы почвы, а значит на биологический и физико-химические почвенные процессы.

Рельеф, перераспределяющий на земной поверхности тепло и влагу. Хозяйственная деятельность человека в настоящее время становится доминирующим фактором в разрушении почв, снижении и повышении их плодородия. Под влиянием человека меняются параметры и факторы почвообразования -- рельефы, микроклимат, создаются водохранилища, проводится мелиорация.

Основное свойство почвы -- плодородие. Оно связано с качеством почв. В разрушении почв и снижении их плодородия выделяют следующие процессы:

Аридизация суши -- комплекс процессов уменьшения влажности обширных территорий и вызванное этим сокраще-ние биологической продуктивности экологических систем. Под действием примитивного земледелия, нерационального использования пастбищ, беспорядочного применения техники на угодь-ях почвы превращаются в пустыни. Эрозия почв, разрушение почв под действием ветра, воды, техники и ирригации. Наиболее опасна водная эрозия -- смыв почвы талыми, дождевыми и ливневыми водами. Водные эрозии отмечаются при крутизне уже 1-2°. Водной эрозии способствует уничтожение лесов, вспашка по склону. Ветровая эрозия характеризуется выносом ветром наиболее мелких частей. Ветровой эрозии способствует уничтожение растительности на территориях с недостаточной влажностью, сильными ветрами, непрерывным выпасом скота. Техническая эрозия связана с разрушением почвы под воздействием транспорта, землеройных машин и техники. Ирригационная эрозия развивается в результате нарушения правил полива при орошаемом земледелии. Засоление почв в основном связано с этими нарушениями. В настоящее время не менее 50% площади орошаемых земель засолено, потеряны миллионы ранее плодородных земель. Особое место среди почв занимают пахотные угодья, т. е. земли, обеспечивающие питание человека. По заключению ученых и специалистов, для питания одного человека следует обрабатывать не менее 0,1 га почвы. Рост численности жителей Земли напрямую связан с площадью пахотных земель, которая неуклонно сокращается. Так в РФ за последние 27 лет площадь сельскохозяйственных угодий сократилась на 12,9 млн. га, из них пашни -- на 2,3 млн. га, сенокосов -- на 10,6 млн. га. Причинами этого являются нарушение и деградация почвенного покрова, отвод земель под застройку городов, посёлков и промышленных предприятий.На больших площадях происходит снижение продуктивности почв из-за уменьшения содержания гумуса, запасы которого за последние 20 лет сократились в РФ на 25-30%, а ежегодные потери составляют 81,4 млн. т. Земля сегодня может прокормить 15 млрд. человек. Бережное и грамотное обращение с землей сегодня стало самой актуальной проблемой.Из сказанного следует, что почва включает минеральные частицы, детрит, множество живых организмов, т. е. почва -- это сложная экосистема, обеспечивающая рост растений. Почвы -- это медленно возобновляемый ресурс. Процессы почвообразования протекают очень медленно, со скоростью от 0,5 до 2 см за 100 лет. Мощность почвы невелика: от 30 см в тундре до 160 см -- в западных черноземах. Одна из особенностей почвы -- естественное плодородие --формируется очень длительное время, а уничтожение плодородия происходит всего за 5--10 лет. Из сказанного следует, что почва менее подвижна по сравнению с другими абиотическими составляющими биосферы. Хозяйственная деятельность человека в настоящее время становится доминирующим фактором в разрушении почв, снижении и повышении их плодородия.

Отрицательные последствия химизации

ПЕСТИЦИДЫ В СОВРЕМЕННОМ МИРЕ.Пестициды - собирательный термин, охватывающий химические соединения различных классов, применяемые для борьбы с вредными организмами в сельском хозяйстве, здравоохранении, промышленности, нефтедобыче и многих других случаях. Пестициды начали использовать еще в войсках Александра Македонского для борьбы с паразитами человека (порошок долматской ромашки). В здравоохранении пестициды применяют для борьбы с членистоногими - переносчиками таких опасных заболеваний, как малярия, чума, туляремия, энцефалит, сонная и слоновая болезнь, многие кишечные заболевания. В здравоохранении и ветеринарии, кроме того, пестициды используют в качестве дезинфицирующих средств, в промышленности - для предохранения неметаллических материалов (полимеров, древесины, текстильных изделий), борьбы с обрастанием морских судов, особенно в южных морях, для борьбы с сероводородобразующими бактериями, для предохранения труб от коррозии.В наибольших масштабах пестициды используют в сельском хозяйстве для борьбы с членистоногими (инсектициды и акарициды), нематодами (нематоциды), грибными (фунгициды) и бактериальными (бактерициды) заболеваниями растений и животных, а также для борьбы с сорняками (гербициды). К пестицидам относят также регуляторы роста растений (ретарданты), используемые для борьбы с полеганием различных культур, для дефолиации (удаления листьев) и десикации (подсушивания растений на корню), чтобы облегчить уборку урожая, а также для предохранения от заморозков и засухи.Бытует мнение, что применение пестицидов представляет большую опасность для человека и животных. Это связано с применявшимися ранее очень ядовитыми соединениями мышьяка. Современные пестициды за редким исключением обладают низкой токсичностью, приближающейся к токсичности поваренной соли, и во много раз менее ядовиты, чем кофеин. Отметим также, что современные пестициды в течение одного вегетационного периода полностью разрушаются в окружающей среде.Современные требования к пестицидам. В связи с широким применением пестицидов возник вопрос о возможной опасности их для человека и окружающей среды. Опасность применения пестицидов может быть связана с наличием остатков в пищевых продуктах, с загрязнением водоемов, почвы и других объектов. По этому вопросу было много эмоциональных выступлений в печати, которые характеризуют не столько опасность, сколько некомпетентность их авторов. Для уменьшения возможной опасности разработаны следующие требования к современным пестицидам:

1) низкая острая токсичность для человека, полезных животных и других объектов окружающей среды;

2) отсутствие отрицательных эффектов при длительном воздействии малых доз, в том числе мутагенного, канцерогенного и тератогенного действия (тератогенный - повреждающий зародыш);

3) низкая персистентность (низкая устойчивость в окружающей среде со временем разложения не более одного вегетационного периода).

Кроме того, рекомендуемые препараты должны обладать следующими свойствами:

1) высокая эффективность в борьбе с вредными организмами;

2) экономическая целесообразность использования;



3) доступность сырья и производства.

Мониторинг, проводимый в США на содержание пестицидов в пищевых продуктах, показывает, что 80-90% их не содержит пестицидов совсем, 10% содержит допустимые нормы и только 0,7% - выше нормы. Интересно отметить, что в странах наиболее интенсивного применения пестицидов самая высокая продолжительность жизни людей, что не является признаком положительного действия применения пестицидов на продолжительность жизни, а характеризует лишь отсутствие их достаточно заметного отрицательного влияния при правильном применении. Во всем мире ведется интенсивная работа по совершенствованию ассортимента применяемых пестицидов и уменьшения их вредного воздействия на окружающую среду. Токсичность пестицидов. Говоря о токсичности пестицидов, надо сказать, что большинство современных препаратов заметно более безопасны, чем многие лекарственные средства. Например: ЛД50 поваренной соли - 3750 мг/кг, кофеина - 200 мг/кг, аспирина - 1750 мг/кг, а современных гербицидов - производных сульфонилмочевины - 5000 мг/кг (ЛД50 - доза препарата, при которой погибают 50% экспериментальных животных). По статистике отравлений в США наибольшее число смертельных случаев отмечено при отравлении алкоголем и менее 2% - от пестицидов и минеральных удобрений.Гербициды. Ассортимент гербицидов весьма значителен и используется применительно к разным культурам. Препаратами, не потерявшими своего значения и сейчас, являются 2, 4-Д (2,4-дихлороксифеноксиуксусная кислота) и ее производные, 2-метил-4-хлор-феноксиуксусная кислота и ее производные, которые пока еще в широких масштабах используют для борьбы с сорняками в посевах зерновых культур, однако для полного уничтожения сорняков требуются и другие гербициды. Из препаратов для борьбы с сорняками в посевах злаков укажем на производные арилоксифеноксипропионовой кислоты, а для борьбы с сорняками в посевах сахарной свеклы успешно применяется препарат фюзилад-супер при нормах расхода 125 г/гаВ последне время широко применяются производные сульфонилмочевины, из которых в практических условиях используют более десяти препаратов. Эту группу соединений применяют при нормах расхода 10-50 г/га. Такие низкие нормы расхода вызывают необходимость очень осторожного их использования, так как повышение норм расхода может вызвать отрицательные последствияФунгициды. В качестве фунгицидов и протравителей семян в значительных количествах используются дитиокарбаматы (ТМТД, манеб, цинеб, поликарбацин, манкоцеб, соединения меди и новые системные фунгициды). Большим достижением последних десятилетий является открытие системного фунгицидного действия у бенлата и производных триазола и морфолина. (Системными фунгицидами называются вещества, способные передвигаться по сосудистой системе растений.) Наиболее распространенными препаратами триазолового ряда являются байтан, байлетон и пропиконазол. Применение системных фунгицидов позволяет эффективно бороться со многими грибковыми заболеваниями растений, в том числе с такими, как фузариум, который вырабатывает ядовитые микотоксины. Их токсичность сопоставима с токсичностью стрихнина и некоторых боевых отравляющих веществ. Кроме того, некоторые микотоксины обладают канцерогенным действием. Интересным препаратом является карбоксин, используемый в качестве протравителя семян в борьбе с пыльной головней; на пыльную головню другие препараты не действуют. Ассортимент фунгицидов весьма значителен.Ретарданты. Большое значение имеет борьба с полеганием особенно зерновых культур, при котором теряется до 20% урожая. Средства борьбы с полеганием - ретарданты в настоящее время также находят широкое применение в сельском хозяйстве. Наиболее широко используются хлорхолинхлорид и 2-хлорэтилфосфоновая кислота (этрел).Биологические средства защиты растений. Наряду с химическими средствами защиты растений интенсивно разрабатываются биологические методы. Различие между биологическими и химическими методами состоит в том, что в качестве химических средств используются вещества, а в качестве биологических - существа, способные к размножению. Все зависит от вида вредителя и культуры, которую требуется защитить. Так, например, для борьбы с паутинным клещиком на огурцах в закрытом грунте можно успешно применять хищного клеща фитосейулюса, но в открытом грунте опыты по применению фитосейулюса менее удачны.Биологические средства защиты растений используют в настоящее время для борьбы с вредителями растений. В качестве таких средств применяются паразиты членистоногих и хищники. В настоящее время ведется интенсивная работа по поиску и созданию новых эффективных биологических средств и способов биологической защиты растений. Наилучшие результаты достигнуты в борьбе с членистоногими. Для защиты от болезней растений некоторое применение получили антибиотики, но в большинстве случаев они не имеют преимуществ перед химическими средствами. Для борьбы с сорными растениями эффективных средств пока не найдено, только в отдельных случаях имеются некоторые виды насекомых, избирательно уничтожающих отдельные сорняки. В большинстве случаев при отсутствии химических средств защиты растений стоимость сельскохозяйственной продукции пока возрастает в 2-3 раза, что связано с рядом трудностей, так как биологические объекты являются менее стандартизованными, чем химические. Такой известный препарат, как дендробациллин, содержащий споры Bacillus thurengiensis и обладающий широким спектром действия на членистоногих, является скорее химическим препаратом, поскольку действует в виде токсина - вещества.Перспективным методом защиты растений от членистоногих является использование половых феромонов для привлечения особей другого пола и уничтожения их на приманочных участках. Кроме того, феромоны можно использовать для дезориентации особей другого пола. Возможно также использование лучевой стерилизации самцов для уменьшения популяции вредителей. Однако феромоны являются химическими веществами, и их можно в равной степени отнести как к биологическому, так и к химическому методу борьбы. Положительными их свойствами являются отсутствие отрицательного действия на полезных насекомых, человека и животных, отсутствие загрязнения окружающей среды (феромоны применяются в основном в ловушках, которые убирают после применения). Кроме того, большинство феромонов практически нетоксичны для человека и животных. Недостатком феромонов является их узкая специфичность действия. Для некоторых видов насекомых применение феромонов дает наилучший эффект. Предполагают, что биологические средства борьбы с вредителями составят около 6% от всех применяемых пестицидов.Наиболее перспективной является интегрированная защита растений с использованием всех возможных средств защиты растений, с учетом биологических особенностей вредителя и его врагов. Это позволяет в некоторых случаях удешевить защиту растений, однако в современном виде борьба с массовыми вредителями - саранчой, луговым мотыльком - может успешно осуществляться химическими средствами.Формы применения. Пестициды, подобно лекарственным средствам, применяют в виде различных форм, важнейшими из которых являются следующие.

1. Смачивающиеся порошки, которые при разведении водой дают устойчивую суспензию. Они содержат действующее вещество, наполнитель, детергент и иногда некоторые вспомогательные вещества в зависимости от активности препарата. Содержание действующего вещества может колебаться от 1 до 90%.

2. Концентраты эмульсий, которые с водой образуют устойчивую эмульсию. Концентрат эмульсии содержит действующее вещество, растворитель, детергент и вспомогательное вещество. Содержание действующего вещества в зависимости от активности соединений может колебаться от 1 до 90%.

3. Дусты для опыливания. Они содержат наполнитель, действующее вещество и вспомогательные вещества, содержание действующего вещества в дустах может колебаться от 1 до 20%.

4. Гранулы с различной величиной частиц, содержащие действующее вещество, наполнитель, вспомогательные вещества. Величина гранул может колебаться в широких пределах в зависимости от назначения, содержание действующего вещества - от 1 до 10%.

Растворимые в воде препараты выпускаются как в твердом виде (порошок, таблетки), так и в виде водных растворов. В некоторых случаях такие препараты содержат растворимый в воде наполнитель, а также некоторые неорганические добавки типа силикагеля, легко суспендирующиеся в воде. Таблетки или гранулы содержат действующее вещество и нерастворимый в воде, но легко суспендирующийся в воде наполнитель.



Какие требования предъявляются к производственным помещениям и рабочим местам?

Территория предприятия и размещение зданий и сооружений на ней должны соответствовать требованиям Санитарных норм проектирования промышленных предприятий и противопожарным нормам проектирования зданий и сооружений с учетом технологических особенностей производства.

Пожарная безопасность на территории организации должна обеспечиваться в соответствии с требованиями Правил пожарной безопасности в Российской Федерации, ГОСТ 12.1.004 и ГОСТ 12.4.09.

Здания и сооружения с технологическими процессами, являющимися источниками выделения в окружающую среду вредных и неприятно пахнущих веществ, а также с источниками повышенных уровней шума, вибрации, ультразвука, электромагнитных волн радиочастот, статического электричества и ионизирующих излучений следует отделять от жилой застройки санитарно - защитными зонами и разрывами и размещать на территории предприятия с подветренной стороны для ветров преобладающего направления по отношению к жилой застройке и к другим производственным зданиям.

Объемно - планировочные и конструктивные решения производственных помещений и сооружений должны удовлетворять требованиям строительных норм и правил, а также санитарных норм проектирования промышленных предприятий и других действующих нормативных документов.

Объем производственных помещений на одного работающего должен составлять не менее 15 куб. м, а площадь помещений - не менее 4,5 кв. м. Высота производственного помещения должна быть не менее 3,5 м. Помещения и участки для производств с избытками явного тепла (более 20 ккал/куб. м x ч), а также для производств со значительными выделениями вредных газов, паров и пыли следует, как правило, размещать у наружных стен зданий и сооружений. Расположение производственных помещений в подвальных, цокольных этажах и на участках, имеющих недостаточное естественное освещение на постоянных рабочих местах (коэффициент естественной освещенности менее 0,1%), допускается предусматривать при наличии специального обоснования только в случаях, когда это необходимо по технологическим условиям. В производственных зданиях и сооружениях, независимо от наличия вредных выделений и вентиляционных устройств, должны предусматриваться для проветривания открывающиеся створки переплетов и другие открывающиеся устройства в окнах площадью не менее 20% общей площади световых проемов. Поступающий воздух должен быть направлен вверх в холодный период года и вниз - в теплый период года.

В зданиях и сооружениях с естественной вентиляцией площадь открываемых проемов следует определять по расчету. Расстояние от уровня пола до низа створных переплетов, предназначаемых для притока воздуха в теплый период года, должно быть не более 1,8 м, а до низа открывающихся проемов, предназначаемых для притока воздуха в холодный период года, - не менее 4 м.

Для открывания, установки в требуемом положении и закрывания створок оконных и фонарных переплетов или других открывающихся устройств в помещениях должны быть предусмотрены приспособления, легко управляемые с пола или с рабочих площадок. Под остекленными фонарями должны быть установлены предохранительные металлические сетки.

Крыши зданий по периметру должны иметь ограждения высотой не менее 0,6 м. В зимнее время крыши и карнизы зданий должны очищаться от снега и льда. Крыши должны оборудоваться устройствами для организованного стока атмосферных осадков.

Производственные помещения должны быть оборудованы достаточным количеством выходов для быстрой эвакуации людей. Должны предусматриваться запасные выходы и лестницы в соответствии с требованиями противопожарных норм. Ворота, входные двери и другие проемы в наружных стенах должны быть утеплены и оборудованы устройствами для механизированного закрывания (пружины, пневматические затворы и т.п.), размещаемые с учетом требований безопасности.

Наружные выходы должны оборудоваться тамбурами или воздушно - тепловыми завесами в соответствии с требованиями строительных норм и правил. Здания, сооружения, конструкции и коммуникации следует окрашивать в цвета в соответствии с ГОСТ 12.4.026 и нормативами по цветовой отделке интерьеров производственных зданий промышленных предприятий.

Полы производственных помещений и складов должны быть ровными, прочными, нескользкими.

Материалы, предусмотренные для устройства полов, должны удовлетворять гигиеническим и эксплуатационным требованиям для данного производства. Полы должны быть из материалов с низкой теплопроводностью (бетонные, керамические и др.), на рабочих местах должны устанавливаться деревянные решетки или теплоизолирующие коврики. В помещениях, где по условиям работы накапливаются жидкости, полы должны быть непроницаемыми для жидкости, иметь необходимый уклон и каналы для стока. Кроме того, на рабочих местах рекомендуется устанавливать деревянные решетки. Каналы в полах для стока жидкости или прокладки трубопроводов перекрываются сплошными или решетчатыми крышками заподлицо с уровнем пола. Отверстия в полах для пропуска приводных ремней, транспортеров и т.п. должны быть минимальных размеров и ограждены бортами высотой не менее 20 см вне зависимости от наличия общего ограждения. В тех случаях, когда по условиям технологического процесса каналы, желоба и траншеи невозможно закрыть, необходимо их ограждение перилами высотой в 1 м с обшивкой по низу на высоту не менее 150 мм от пола.

В помещениях, где применяются агрессивные и вредные вещества, полы должны быть из материалов, устойчивых в отношении химического воздействия этих веществ (метлахская плитка и т.п.).

Отделка стен, потолков и поверхностей конструкции помещений, в которых размещены производства, выделяющие вредные или агрессивные вещества (ртуть, свинец, соединения марганца, мышьяк, бензол, кислоты, сернистый газ и др.), должна допускать мокрую уборку.

Дверные проемы должны быть без порогов. В производственных помещениях должны быть выделены площади для складирования материалов, заготовок и готовых изделий. Производственные помещения должны быть оборудованы противопожарными средствами в соответствии с Правилами пожарной безопасности в Российской Федерации и ГОСТ 12.4.009. К противопожарному инвентарю и оборудованию должен быть обеспечен свободный доступ. Для указания местонахождения, вида пожарной техники и средств пожаротушения должны применяться указательные знаки по ГОСТ 12.4.026. Использовать противопожарные средства не по назначению запрещается. За состоянием и эксплуатацией зданий и сооружений должно быть организовано систематическое наблюдение. Общие технические осмотры производственных зданий и сооружений, как правило, должны проводиться два раза в год - весной и осенью. Результаты осмотров должны оформляться актами. На каждое здание и сооружение должен быть оформлен технический паспорт.

При эксплуатации производственных зданий и сооружений запрещается:

- превышение предельных нагрузок на полы, перекрытия, площадки;

- установка, навеска, крепеж оборудования, транспортных устройств, трубопроводов, не предусмотренных проектом, в том числе и временных (например, при ремонте);

- выполнение отверстий в перекрытиях, балках, колоннах, стенах без письменного разрешения лиц, ответственных за эксплуатацию здания.

Естественное и искусственное освещение производственных, служебных и вспомогательных помещений и искусственное освещение мест производства работ вне здания должно соответствовать требованиям СНиП II-4, Правил устройства электроустановок, Правил эксплуатации электроустановок потребителей, Правил техники безопасности при эксплуатации электроустановок потребителей. При этом:

- производственные помещения, в которых постоянно пребывают работающие без естественного освещения или с недостаточным по биологическому действию естественным освещением (коэффициент естественной освещенности менее 0,1%), должны быть оборудованы установками искусственного ультрафиолетового излучения или необходимо предусматривать устройство фотариев, располагаемых на территории организации;

- у окон, обращенных на солнечную сторону, должны быть приспособления для защиты от прямых солнечных лучей (жалюзи, экраны, козырьки, шторы или побелка остекления на летнее время);

- стекла окон и фонарей должны очищаться от пыли, копоти и грязи не реже двух раз в год, а в помещениях со значительными производственными выделениями дыма, пыли, копоти, грязи и т.п. - не реже четырех раз в год. Процесс очистки стекол рекомендуется механизировать.

Искусственное освещение производственных помещений должно быть двух систем: общее (равномерное или локализованное) и комбинированное (к общему освещению добавляется местное). Применение одного местного освещения не допускается.

Для освещения помещений различного назначения и мест производства работ вне здания следует предусматривать газоразрядные лампы низкого и высокого давления (как правило - люминесцентные). В случае невозможности или технико - экономической нецелесообразности применения газоразрядных источников света допускается использование ламп накаливания. Выбор источников света следует производить с учетом рекомендаций строительных норм и Правил устройства электроустановок.

Лампы накаливания и люминесцентные лампы, применяемые для общего и местного освещения, должны быть снабжены отражателями. Применение открытых ламп без отражателей запрещается.

Для безопасного продолжения работы при невозможности ее прекращения и для выхода людей из помещения при внезапном отключении освещения должно действовать аварийное и эвакуационное освещение;

Аварийное освещение должно предусматриваться, если отключение рабочего освещения и связанное с этим нарушение нормального обслуживания оборудования и механизмов может вызвать:

- взрыв, пожар, отравление людей;

- длительное нарушение технологического процесса;

- нарушение работы таких объектов, как диспетчерские пункты, насосные установки водоснабжения, канализации и теплофикации;

- остановку вентиляции или кондиционирования воздуха для производственных помещений, в которых недопустимо прекращение работ и т.п..

Аварийное освещение должно быть включено на все время действия рабочего освещения или должно автоматически включаться при внезапном выключении рабочего освещения.

Эвакуационное освещение должно быть установлено:

- в местах, опасных для прохода людей;

- в проходах и на лестницах, служащих для эвакуации более 50 человек;

- в производственных помещениях с постоянно работающими в них людьми, где выход людей из помещения при аварийном отключении рабочего освещения связан с опасностью травмирования из-за продолжения работы производственного оборудования;

- в помещениях общественных зданий и вспомогательных зданий промышленных предприятий, если в помещении могут одновременно находиться более 100 человек.

Светильники общего локализованного (бокового) освещения должны располагаться на стенах или колоннах с ориентацией на рабочее место и иметь концентрированное или среднее светораспределение.

Местное освещение рабочих поверхностей должно быть таким, чтобы светильники можно было устанавливать с необходимым направлением света.

Светильники местного освещения должны быть конструктивно связаны с рабочим местом с исключением необходимости перемещения их во время движения мостовых кранов. Для питания светильников местного освещения следует применять напряжение в соответствии с требованиями, предусмотренными стандартами ССБТ на конкретные виды оборудования и с учетом степени опасности производственного помещения.

Ручные переносные светильники в помещениях с повышенной опасностью должны иметь напряжение не выше 42 В, а в помещениях особо опасных и вне помещений - не выше 12 В.

Питание светильников напряжением до 42 В должно производиться от трансформатора с раздельными обмотками первичного и вторичного напряжения, один из выводов вторичной обмотки должен быть заземлен.

Периодически, не реже одного раза в год, необходимо проверять уровень освещенности в контрольных точках и уровень общей освещенности помещений.

Производственные, вспомогательные и служебные помещения организации должны быть оборудованы системами отопления и вентиляции или кондиционирования воздуха.

Для отопления производственных, служебных и вспомогательных помещений должны предусматриваться системы, приборы и теплоносители, не выделяющие дополнительных производственных вредностей.

При центральной системе отопления должна быть предусмотрена возможность регулирования нагрева помещения с возможностью независимого включения и выключения отопительных секций.

Нагревательные приборы в производственных помещениях со значительным выделением пыли должны иметь гладкие поверхности, допускающие влажную очистку (уборку).

Для производственных помещений, в которых на одного работающего приходится более 50 кв. м площади пола, следует предусматривать системы отопления, обеспечивающие требуемую температуру воздуха на постоянных рабочих местах и более низкую регламентированную температуру вне этих рабочих мест.

Для вентиляции производственных, служебных и вспомогательных помещений должны применяться как естественная аэрация, так и система принудительной вентиляции. Выбор типа вентиляции должен быть обоснован расчетом, подтверждающим обеспечение требуемого воздухообмена, метрологического и санитарно - гигиенического состояния воздушной среды.

Открывание фрамуг окон, створок фонарей, отверстий шахт должно быть механизировано и осуществляться с помощью приспособлений, управляемых с пола.

Прокладка трубопроводов, транспортирующих вредные, ядовитые, взрывоопасные, горючие или с неприятными запахами газы и жидкости, на воздуховодах и через помещения для вентиляционного оборудования не допускается.

Эффективность работы вентиляции должна проверяться систематически контрольными замерами с анализом состояния воздушной среды.

Для защиты рабочих мест от сквозняков в холодное время года необходимо предусматривать воздушные или воздушно - тепловые завесы.

Завесами должны быть оборудованы ворота, открывающиеся чаще пяти раз или не менее чем на 40 мин. в смену. Завесами должны быть оборудованы технологические проемы отапливаемых зданий и сооружений при отсутствии тамбуров - шлюзов в районах с расчетной температурой наружного воздуха ниже 15 град. C.

Воздушные и воздушно - тепловые завесы должны обеспечивать на время открывания ворот, дверей или технологических проемов температуру воздуха в помещениях на постоянных рабочих местах не ниже:

14 град. C - при легкой физической работе;

12 град. C - при работе средней тяжести;

8 град. C - при тяжелой работе.

При отсутствии постоянных рабочих мест в зоне ворот, дверей или технологических проемов при их открывании допускается понижение температуры воздуха до 5 град. C.

Состав санитарно - бытовых помещений для различных видов производств, их обустройство и размеры должны соответствовать требованиям СНиП 2.09.04.



Источники химического загрязнения факторов воздушной среды жилых помещений и их гигиеническая характеристика

Актуальность обеспечения экологически чистого жилища предопределяется в первую очередь тем, что в условиях тотального загрязнения окружающей среды в жилище нередко формируется негативная среда.

В итоге, как установлено нашими исследованиями, качество воздушной среды закрытых помещений в целом зачастую хуже, чем атмосферного городского воздуха,— содержание химических токсичных веществ в жилых и общественных зданиях в 1,4—4 раза выше, чем снаружи.

Концентрации таких токсичных веществ, как тяжелые металлы, формальдегид, окись углерода, двуокись азота, дочерние продукты радона, асбест, продукты деструкции полимеров, органические соединения, внутри зданий превышают соответствующие концентрации в атмосферном воздухе, что свидетельствует о существовании собственных источников загрязнения в жилых и общественных зданиях непромышленного назначения.

Отсюда вытекает необходимость разработки таких базовых аспектов, как понятие об экологически чистом жилище, установление перечня критериев и показателей, характеризующих экологически чистое помещение в жилом доме и в прилегающей к дому среде.

На основе обобщения отечественного и зарубежного опыта нормирования и проектирования жилища целесообразно: а) определить факторы среды, которые возможно и целесообразно нормировать, но которые еще не регламентируются нормативными документами; б) выявить факторы, научная новизна и недостаточная исследованность которых позволяет поставить вопрос об их дальнейшем изучении в силу их значимости для здоровья населения.

В ряде стран получены в целом сходные данные о том, какую часть суток люди проводят в помещениях, т. е. в закрытой среде. Оказалось, что для большинства людей эта доля чаще всего составляет более 80%, причем жилые непроизводственные помещения это та среда, в которой люди проводят большую часть жизни.

Любое здание требует специального изучения по единой стандартной методике, но, как правило, для каждого из них должны быть найдены особые способы коррекции. Маловероятно, чтобы жильцы отдельных квартир были способны уловить, например, связь между качеством воздуха и неблагоприятными влияниями на их здоровье содержащихся в нем загрязнителей, если эти влияния выражены нерезко. Поэтому анализ качества жилых зданий должен обязательно включать эпидемиологические исследования и предусматривать также характеристику источников загрязнителей и других факторов, влияющих на состояние здоровья населения.

При изучении внутренней среды зданий нельзя полагаться только на опыт, накопленный в процессе разработки и реализации снижения воздействия на население загрязнителей среды вне помещений. Очевидно, необходимо рассмотреть, разработать и испытать специальные стратегии с последующей их оценкой по оптимизации среды собственно помещений.

Вышесказанное требует разработки эффективной стратегии защиты населения от воздействия внутридомовых загрязнений, которая была бы единой для проектировщиков, архитекторов, производителей всей номенклатуры строительных материалов, строителей, экологов, гигиенистов и санитарных врачей.

Чтобы обеспечить экологическую безопасность жилища, можно рекомендовать к использованию в строительстве жилых и общественных зданий только те строительные, отделочные и изоляционные материалы, гигиенические характеристики которых отвечают современным требованиям, причем важно, чтобы заводы-изготовители строго соблюдали принятую в официальных документах рецептуру и технологию производства, так как в противном случае завод под маркой однажды одобренного санитарной службой образца будет выпускать такой материал, который может оказывать вредное влияние на здоровье проживающих, что зачастую и наблюдается в последнее время вследствие четко выраженной тенденции к использованию при изготовлении стройматериалов промышленных отходов.

Поэтому при рассмотрении типовых индивидуальных проектов, а также проектов реконструкции жилых и гражданских зданий необходимо строго руководствоваться, прежде всего, перечнем стройматериалов, разрешенных к применению в строительстве Госкомсанэпиднадзором. В процессе строительства объекта, особенно на стадии проведения заключительных работ, врач должен осуществлять контроль за соответствием применяемых в строительстве материалов.

По окончании строительства и заселения домов необходимо провести выборочный контроль, причем такой контроль должен включать наблюдение за здоровьем проживающих и лабораторный анализ воздуха жилых комнат на содержание вредных веществ.

При эколого-гигиенической оценке строительных материалов необходимо руководствоваться следующими требованиями:



  1. Строительные материалы не должны создавать в помещении специфического запаха к моменту заселения дома.

  2. Применяемые материалы не должны выделять в окружающую среду летучие вещества в таких количествах, которые могут оказывать прямое или косвенное неблагоприятное действие на организм человека (с учетом совместного воздействия всех выделяющихся веществ).

  3. В качестве одного из критериев при контроле за качеством среды помещений могут быть приняты ПДК вредных веществ для атмосферного воздуха. При этом должна быть исключена их кумуляция, а также способность вызывать отдаленные последствия — аллергенное, мутагенное, эмбриогенное и канцерогенное действие.

  4. Строительные материалы не должны стимулировать развитие микрофлоры (особенно патогенной) и должны быть доступны для влажной дезинфекции.

  5. Материалы не должны накапливать на своей поверхности статическое электричество, ухудшать микроклимат помещений, а окраска и фактура строительных материалов должны соответствовать эстетическим и физиолого-гигиеническим требованиям.

Применение современных строительных и отделочных материалов, мебели, лаков и красок, не прошедших эколого-гигиеническую экспертизу, обусловливает накопление в воздухе помещений большого количества загрязнителей. Хотя большинство из них встречается во внутрижилищной среде в относительно невысоких концентрациях, но их интегральное влияние на организм человека вызывает вполне обоснованные опасения, поскольку эти вещества обладают токсическим, раздражающим, аллергенным и даже канцерогенным действием, а также нередко и неприятным запахом.

Воздействие этих химических соединений на организм можно классифицировать следующим образом: а) воздействие запаха; б) раздражение слизистых оболочек; в) токсическое воздействие; г) отдаленные, последствия.

Находящиеся в воздухе многочисленные токсичные соединения, выделяющиеся из строительных материалов, мебельных покрытий и различных потребительских изделий, чаще всего находятся в газообразной форме. Однако они принимают также пылеобразную форму, а иногда выделяются в форме аэрозоля.

В целом во внутрижилищной среде обнаружено более 100 химических веществ, относящихся к различным классам химических соединений, в том числе к предельным, непредельным и ароматическим углеводородам, галогенопроизводным углеводородам, спиртам, фенолам, простым и сложным эфирам, альдегидам, кетонам, гетероциклическим соединениям, аминосоединениям.

Некоторые из них уже изучены, а ряд предстоит еще изучить, в частности присутствие их в организме и выделение соединений или их метаболитов. Это важный компонент в оценке влияния на организм хронического воздействия токсикантов и отдаленных результатов. Другой аспект эколого-гигиенической оценки – исследование процессов кумуляции в разных тканях. Поскольку все здания имеют постоянный воздухообмен с внешней средой, то миграция пыли, токсичных веществ, содержащихся в атмосферном воздухе, во внутреннюю среду помещений обусловлена их естественной и искусственной вентиляцией и поэтому вещества, присутствующие в наружном воздухе, обнаруживаются в помещениях, включая помещения, в которые подается воздух, прошедший обработку в системах кондиционирования воздуха.

Следовательно, конструкции здания и системы вентиляции не защищают человека от загрязненного атмосферного воздуха, правда, степень проникновения атмосферных загрязнений внутрь здания для разных веществ различна.

Ущерб, наносимый здоровью населения, относится, прежде всего, к увеличению количества заболеваний верхних дыхательных путей с последующим поражением и нижних дыхательных путей.

Даже относительно невысокие концентрации большого количества токсичных веществ небезразличны для человека и способны влиять на его самочувствие, работоспособность и здоровье. Исследования, проведенные в нашей стране, показали, что воздушная среда помещений ухудшается пропорционально числу лиц и времени их пребывания в помещении. Исследования воздуха закрытых помещений позволили идентифицировать в них ряд антропотоксинов, распределение которых по классам опасности представляется следующим образом: диметиламин, сероводород, двуокись азота, окись этилена, бензол (2-й класс опасности, высокоопасные вещества); уксусная кислота, фенол, метилстирол, толуол, метанол, винилацетат (3-й класс опасности, умеренно опасные вещества); ацетон, метилкетон, бутилацетат, бутан, метилацетат (4-й класс опасности). Пятая часть выявленных антропотоксинов относится к числу высокоопасных веществ. При этом обнаружено, что в невентилируемых помещениях содержание диметиламина и сероводорода может превышать ПДК для атмосферного воздуха. Превышали ПДК или находились на их уровне и такие вещества, как двуокись и окись углерода, аммиак. Все остальные вещества, хотя и составляли десятые и меньшие доли ПДК, однако вместе взятые свидетельствовали о неблагополучии воздушной среды, поскольку даже 2—4-часовое пребывание в этих условиях невентилируемого помещения отрицательно сказывалось на показателях умственной работоспособности обследуемых.

Из вышеизложенного очевидно, что в современных условиях жилая среда при неправильной ее организации может стать экологически опасной для здоровья человека. Поэтому создание экологически безопасной жилой среды немыслимо сегодня без комплексной оценки всех эколого-гигиенических параметров среды жилых и общественных зданий, без выявления, всестороннего изучения и регламентирования как положительных факторов, так и факторов риска, без контроля за соблюдением всех эколого-гигиенических требований при проектировании, строительстве и эксплуатации жилых зданий.

Нам представляется, что экологически безопасную жилую среду можно определить как среду, которая полностью защищает человека от воздействия неблагоприятных природных факторов, создает оптимальные условия для эффективного повседневного отдыха и полного восстановления сил человека, затраченных в процессе труда, и при этом является абсолютно безвредной для здоровья человека.

Важнейшим инструментом целенаправленного управления организацией экологически безопасной жилой среды, формирования наиболее благоприятных условий проживания населения является разработка критериев для оценки качества жилой среды.

Одним из основных принципов здесь является гарантированная безвредность для здоровья человека факторов, воздействующих на человека в условиях жилых зданий. Этот принцип означает, что параметры жилой среды должны гарантировать сохранение здоровья и работоспособности даже человеку с пониженной переносимостью колебаний факторов среды, т. е. включая детей, престарелых и больных хроническими заболеваниями.

Следует учитывать, что большинство отрицательных факторов жилой среды относится к факторам малой интенсивности и поэтому не является непосредственной причиной развития тех или иных заболеваний. Опасность этих факторов заключается в том, что они могут стать условиями развития ряда заболеваний, т. е. способны вызывать предпатологические неспецифические изменения в организме. Суть этих изменений состоит в снижении резистентности организма к действию патогенных факторов. В реальных условиях это проявляется в повышении общей заболеваемости населения под влиянием неблагоприятных жилищных условий.

Если говорить о нормировании неблагоприятных факторов жилой среды по степени опасности для здоровья населения, то эти факторы могут быть разделены на 2 основные группы: факторы, являющиеся действительными причинами ряда специфических заболеваний, и факторы, создающие условия развития заболеваний, вызываемых другими причинами. При этом следует иметь в виду 2 аспекта этого вопроса — качественный и количественный.

Под качественным аспектом мы понимаем то обстоятельство, что ряд факторов окружающей среды имеет благодаря своей природе столь выраженное неблагоприятное действие (патогенность, токсичность), что в реальных условиях практически всегда вызывает заболевания. К ним, по-видимому, можно отнести только небольшой ряд факторов: асбест, формальдегид, бытовые аллергены (пыль, микроклещи и др.,), 3—4-бенз-пирен, радон, которые можно охарактеризовать как “абсолютные” причины. Количественная сторона воздействия таких факторов на организм имеет менее выраженное значение, хотя и для них имеются уровни воздействия, не вызывающие заболеваний.

Большинство же экологически неблагоприятных факторов жилой среды обладает по своей природе меньшей патогенностью, в связи с чем их отрицательный эффект в несравнимо большей степени, чем для предыдущих факторов, будет зависеть от количества (дозы) воздействия на организм и его продолжительности. В качестве примера можно упомянуть химическое, микробное, пылевое загрязнение воздуха помещений. Как правило, в условиях жилых и общественных зданий эти факторы имеют все признаки условия. В то же время они способны только в определенных, крайних условиях приобретать свойства, характерные для причины, что позволяет их классифицировать как “относительные” условия.

Далее идет целый ряд факторов, которые независимо от уровней воздействия в реальных условиях обладают лишь способностью изменять действие других причин, вызывающих заболевания, и, следовательно, в зависимости от степени выраженности модифицирующих свойств эти факторы можно рассматривать как условия или модификаторы. Большинство факторов жилой среды следует отнести к этой категории, так как они в реальных условиях жилища не оказывают выраженного неблагоприятного влияния на организм, но способны усиливать повреждающее действие других факторов при одновременном действии с ними.

При разработке гигиенических регламентов экологически чистой жилой среды необходимо учитывать тот факт, что в условиях жилых и общественных зданий на человека одновременно действует целый комплекс факторов, различных по характеру, направленности и интенсивности воздействия. Кроме того, имеется целый ряд факторов, изменение параметров которых оказывает влияние на качество жилой среды опосредованно через другие факторы. Например, изменение температуры окружающей среды вызывает изменение скорости выделения токсичных веществ из полимерных материалов, увеличение влажности воздуха в жилых зданиях способствует увеличению грибкового загрязнения воздуха, а снижение инсоляции — развитию сырости в помещениях. Поэтому при разработке критериев для оценки жилой среды необходимо учитывать их комплексное влияние друг на друга.



Электромагнитные поля как негативный фактор помещений жилых и общественных зданий и их влияние на здоровье населения

На практике при характеристике электромагнитной обстановки используют термины "электрическое поле", "магнитное поле", "электромагнитное поле". Коротко поясним, что это означает и какая связь существует между ними.

Электрическое поле создается зарядами. Например, во всем известных школьных опытах по электризации эбонита, присутствует как раз электрическое поле.

Магнитное поле создается при движении электрических зарядов по проводнику.

Для характеристики величины электрического поля используется понятие напряженность электрического поля, обозначение Е, единица измерения В/м (Вольт-на-метр). Величина магнитного поля характеризуется напряженностью магнитного поля Н, единица А/м (Ампер-на-метр). При измерении сверхнизких и крайне низких частот часто также используется понятие магнитная индукция В, единица Тл(Тесла), одна миллионная часть Тл соответствует 1,25 А/м.

По определению, электромагнитное поле - это особая форма материи, посредством которой осуществляется воздействие между электрическими заряженными частицами. Физические причины существования электромагнитного поля связаны с тем, что изменяющееся во времени электрическое поле Е порождает магнитное поле Н, а изменяющееся Н - вихревое электрическое поле: обе компоненты Е и Н, непрерывно изменяясь, возбуждают друг друга. ЭМП неподвижных или равномерно движущихся заряженных частиц неразрывно связано с этими частицами. При ускоренном движении заряженных частиц, ЭМП "отрывается" от них и существует независимо в форме электромагнитных волн, не исчезая с устранением источника (например, радиоволны не исчезают и при отсутствии тока в излучившей их антенне).

Электромагнитные волны характеризуются длиной волны, обозначение - l (лямбда). Источник, генерирующий излучение, а по сути создающий электромагнитные колебания, характеризуются частотой, обозначение - f.

Важная особенность ЭМП - это деление его на так называемую "ближнюю" и "дальнюю" зоны. В "ближней" зоне, или зоне индукции, на расстоянии от источника r < l ЭМП можно считать квазистатическим. Здесь оно быстро убывает с расстоянием, обратно пропорционально квадрату r -2 или кубу r -3 расстояния. В "ближней" зоне излучения электромагнитная волне еще не сформирована. Для характеристики ЭМП измерения переменного электрического поля Е и переменного магнитного поля Н производятся раздельно. Поле в зоне индукции служит для формирования бегущих составляющей полей (электромагнитной волны), ответственных за излучение. "Дальняя" зона - это зона сформировавшейся электромагнитной волны, начинается с расстояния r > 3l. В "дальней" зоне интенсивность поля убывает обратно пропорционально расстоянию до источника r -1.

В "дальней" зоне излучения есть связь между Е и Н: Е = 377Н, где 377 - волновое сопротивление вакуума, Ом. Поэтому измеряется, как правило, только Е. В России на частотах выше 300 МГц обычно измеряется плотность потока электромагнитной энергии (ППЭ), или вектор Пойтинга. Обозначается как S, единица измерения Вт/м2. ППЭ характеризует количество энергии, переносимой электромагнитной волной в единицу времени через единицу поверхности, перпендикулярной направлению распространения волны.



Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7   8   9   10   11


База данных защищена авторским правом ©ekollog.ru 2017
обратиться к администрации

войти | регистрация
    Главная страница


загрузить материал