Путь в синергетику. Экскурс в десяти лекциях



страница1/7
Дата30.04.2016
Размер0.97 Mb.
ТипКнига
  1   2   3   4   5   6   7
Путь в синергетику. Экскурс в десяти лекциях

Книга посвящена одному из наиболее перспективных междисциплинарных подходов – теории самоорганизации, или синергетике. Известный физик и замечательный писатель Чарльз Сноу в середине XX века сетовал на опасную пропасть в науке, которая пролегла между естественно-научной и гуманитарной культурами. Одна из целей синергетики – перебросить мост через эту пропасть. Понятия, идеи, концепции синергетики сейчас все шире используются в экономике и социологии, в политике и бизнесе, в психологии и государственном управлении, оказывая тем самым влияние на наше мировоззрение.

Эту книгу хорошо дополняют: Илья Пригожин. Порядок из хаоса, Джеймс Глейк. Хаос. Создание новой науки, Илья Пригожин. От существующего к возникающему.

Безручко Б.П., Короновский А.А., Трубецков Д.И., Храмов А.Е. Путь в синергетику. Экскурс в десяти лекциях. – М.: Книжный дом «Либроком», 2010. – 304 с.





Лекция первая. Что такое «синергетика»?

Крестный отец синергетики — Герман Хакен в своей книге Синергетика пишет: «Синергетика занимается изучением систем, состоящих из многих подсистем самой различной природы, таких как электроны, атомы, молекулы, клетки, нейроны, механические элементы, фотоны, органы, животные и даже люди». Синергетика рассматривает, «каким образом взаимодействие подсистем приводит к возникновению пространственных, временных или пространственно-временных структур в макроскопических системах». В центре внимания синергетики находится согласованность взаимодействия отдельных частей при образовании структуры как единого целого.

Хакен обратил внимание на то, что кооперативные, взаимосогласованные явления наблюдаются в самых разнообразных системах: это и гидродинамические неустойчивости, и автокаталитические химические реакции, и динамика популяций, образование макромолекул и циклонов в атмосфере. Более того, при возникновении тех или иных структур в различных системах, все эти системы ведут себя схожим образом.

Г. Хакен не сделал никакого открытия: он не обнаружил нового эффекта, не построил никакой теории и даже не выдвинул никакой гипотезы. Он лишь обратил внимание научного сообщества на тот факт, что процессы самоорганизации и образования структур в самых различных системах имеют сходные черты.

Проблема синтеза знаний из различных областей науки, важность обобщенного способа изучения тех или иных научных проблем подчеркивалась еще известным философом Элвиным Тоффлером в его культовой книге Третья волна: «В начале 50-х годов, как раз тогда, когда биологи начали разгадывать генетический код, специалисты в области связи и теоретики из Лаборатории Белл, специалисты- компьютерщики из IBM, английские и французские специалисты в области теоретических научных исследований — все они начали интенсивную и увлекательную работу. Эти работы породили революцию в автоматике и во всех новых видах технологий... Однако вместе с оборудованием пришло и новое мышление. Ключом к революции в автоматике стал „системный подход"».

Синергетику, которая занимается поисками единого в самых разнообразных системах, можно рассматривать как науку, стремящуюся возвратить единство в разрозненную картину мироздания. Синергетика возникла не на ровном месте — она появилась как объединение на более высоком уровне знаний, идей и методов различных наук, у каждой из которых она заимствовала что-либо. Замысел профессора Хакена заключался в том, чтобы синергетика играла роль метанауки, которая подмечает и изучает общие закономерности различных систем, которые частные науки считали своими. (Заметим, что некоторое время тому назад на роль метанауки претендовала кибернетика. По Г Хакену, коренное отличие синергетики и кибернетики в том, что «...кибернетика занимается регулированием и управлением, синергетика же – самоорганизацией.)

Отвлекаясь от изначальной природы изучаемой системы, синергетика сводит ее до модели, которая затем изучается методами синергетики (которые, в свою очередь, также привнесены в синергетику из других наук и переосмыслены ею). Оказывается, подчас системы совершенно различной природы с помощью синергетических методов могут быть сведены к одной модели, а тогда все результаты, являющиеся достоянием одной из наук, могут быть (с известной долей осторожности) перенесены в другую науку и сделаны доступными для специалистов этой науки.

Синергетику можно рассматривать как правоприемницу и продолжательницу многих естественно-научных дисциплин, и, пожалуй, в первую очередь (но не только) теории колебаний. С колебаниями – процессами или явлениями, обладающими той или иной степенью повторяемости — каждый из нас в своей жизни встречается постоянно. Колебания бывают самые разнообразные: это и переменный ток в наших домах, и биение нашего сердца, и музыка, звучащая из радиоприемника, и колебания температуры в течение суток, и колебания цен на рынке – все это различные виды колебаний. Разумеется, колебаниями электрического напряжения занимается физика, колебаниями сердца — физиология, колебаниями температуры – метеорология, а колебаниями цен – экономика. Каждая из этих наук объясняет эти колебания по-своему, с учетом сложившегося исследовательского аппарата, традиций и т. п. Но при таком подходе очень легко пройти мимо того очевидного факта, что все это — колебания, что они не просто похожи, но имеют общие закономерности. Именно исследованием общих закономерностей колебательных движений и занимается теория колебаний, отвлекаясь от частных черт изучаемых систем.

Логическим продолжением теории нелинейных колебаний является теория волновых процессов — развитие и распространение идей теории колебаний на распределенные системы. «Что такое распределенная система?» Если для вас оказывается существенной зависимость динамики системы от координат и времени (а не только от времени, как в теории колебаний) — вы изучаете систему с распределенными параметрами.

Из теории волновых процессов берет свое начало теория автоволновых процессов, также передавшая синергетике часть своего аппарата. Теория волновых процессов изучает пассивные системы, т. е. такие системы, в которых распространение волн может начаться только после того, как какой-либо внешний источник внес внешнее возмущение в систему, вывел ее из состояния равновесия. В то же время, существуют так называемые активные среды, в которых запасена энергия, необходимая для возникновения и распространения волн. Степь, покрытая сухой травой, по которой распространяется огонь, является автоволновой средой, само пламя — автоволной, а сам пример входит в число классических примеров как теории автоволновых процессов, так и синергетики.

Еще одна составляющая синергетики — теория динамического хаоса. Относительно простые системы, о «конструкции» которых все известно, могут демонстрировать непредсказуемое поведение. Несмотря на то, что мы знаем все уравнения, которые описывают систему, предсказать состояние системы через некоторый интервал времени мы не можем, а поведение таких систем внешне выглядит как беспорядочное и случайное.

К процессам самоорганизации, образования структур имеют самое непосредственное отношение теория диссипативных структур, основоположницей которой является бельгийская школа, возглавляемая выходцем из России, недавно ушедшим от нас лауреатом Нобелевской премии Ильей Пригожиным. В рамках этой теории самоорганизация и образование структур описываются с точки зрения термодинамического подхода. Нельзя обойти вниманием теорию фазовых переходов, изучающую переходы веществ из одних состояний в другие, теорию бифуркаций и катастроф, объектом исследования которых являются вопросы устойчивости (и неустойчивости). К синергетике можно отнести и изучение клеточных автоматов, с помощью которых моделируются процессы самоорганизации.



Лекция вторая. Моделирование — универсальный инструмент синергетики (или что общего у груза на пружинке с зайцами и лисами)

Понятие модели. Модель — нечто похожее по своим свойствам на оригинал, создаваемое и (или) используемое человеком для реализации своих целей. Выбор той или иной модели определяется целью моделирования.

Познавательная роль моделей. Модели играют роль «фотоаппаратов», «очков», «фильтров», через которые мы рассматриваем мир. Хорошей аналогией активной познавательной роли модели является фонарь, освещающий некоторую область в окружающей тьме.

Какие бывают модели и как они рождаются. По своему происхождению модели можно условно разделить на 4 группы:

  1. полученные интуитивно — из головы, например, придумыванием красивых уравнений;

  2. упрощением известного более общего — по принципу «от общего к частному», как деловое платье можно сконструировать из мудреного творения кутюрье, оторвав лишние рюшки и спрямив некоторые линии;

  3. по принципу от частного к общему — когда берут известные простые модели и объединяют их в ансамбль;

  4. непосредственно из данных эксперимента, наблюдения.

Модели могут иметь вид предметов, рисунков, формул, мыслимых образов. Мы ограничим рассмотрение лишь моделями, отражающими естественно-научное знание, а они, как правило, формулируются на языке математики. Но существуют и примеры изложения основ синергетики без формул, например, книга Н.Н. Моисеева Расставание с простотой.

Особая роль математических моделей. Математика — наука о количественных отношениях и пространственных формах действительного мира. Сначала она появилась как набор полезных правил и формул для решения практических задач, с которыми люди сталкивались в повседневной жизни. Ее создали цивилизации Древнего Египта и Вавилона около 3 тысячелетий до н. э. Но только приблизительно в VI веке до н.э. древние греки уловили возможность использования математики в качестве инструмента для получения новых знаний (подробнее см. Стивен Строгац. Удовольствие от х).

Математика как логический вывод и средство познания природы появилась в связи с тем, что к VI веку сложилось миропонимание, сводящееся к следующему: природа построена рационально, а явления протекают по точному плану, который в конечном итоге является математическим, человеческий разум всесилен, а поэтому этот план можно раскрыть и познать. В результате подобных наблюдений родились два основополагающих принципа:



  • природа устроена на математических принципах;

  • числовые соотношения — основа, единая сущность и инструмент познания порядка в природе.

В чем причина исключительной эффективности математики? Над этим задумывалось большое число мыслителей от древности до наших дней. По ответам их можно условно разделить на 2 группы. Первые считают, что математики подбирают аксиомы так, чтобы выводимые из них следствия согласовались с опытом, т. е. математика подстраивается под природу. Другими словами, всеобщие и необходимые законы опыта принадлежат не самой природе, а только разуму, который вкладывает их в природу. Вторые считают, что мир основан на математических принципах.

Что общего находит синергетика в системах различной природы? Например, колебания грузика на пружине, концентрации молекул в химической реакции или численность популяции одного биологического вида в условиях его конкуренции с другим видом при определенных условиях описывает одно и то же уравнение осциллятора:

где t — время, ω0 — коэффициент, имеющий смысл частоты собственных колебаний, а x в первом случае равно отклонению грузика от положения равновесия, во втором — отклонению концентрации молекул от равновесного значения, а в третьем — разности между численностью особей в популяции и ее равновесным (стационарным) значением.

Для всех перечисленных объектов и математической модели общим является повторяющийся через период Т = 2π/ω0 вид зависимости величины x от времени. Более того, можно указать даже форму колебаний, которая описывается функциями синуса или косинуса. Обогатившись математическим моделями, созданными исследователями различных природных и искусственных объектов и проанализированных поколениями математиков и естественников, синергетика рассматривает процессы самоорганизации — образования пространственных неоднородностей (структур) в системах, состоящих из большого числа элементов и их эволюции во времени.

Лекция третья. Математические понятия, без которых не обойтись

Почему в нашем курсе много физики и математики? Синергетика во многом «берет» свое начало из естественных наук. Кроме того, математический аппарат, который с успехом в них применяется, обеспечивает универсальность описания явлений различной природы.

Система — множество элементов, находящихся в отношениях и связях друг с другом, образующих определенную целостность, единство. В недавно вышедшей книге Д.М. Жилина Теория систем приведено такое определение: свойство совокупности, которое не является суммой или средневзвешенным свойством отдельных компонентов совокупности, называется эмерджентным свойством. Совокупность, обладающая эмерджентным свойством, называется системой.

Величины, которые можно измерить (сравнить с однородной величиной, принятой за единицу измерения), называют физическими. Отметим, что отнюдь не все величины можно измерить. Например, «красота» не имеет эталонов, с которыми можно было бы провести количественное сопоставление — измерить. Размеры (численные значения) величин, типичные для данной системы, будем называть характерными масштабами данной системы (рис. 3.1, 3.2).

Рис. 3.1. Характерные пространственные масштабы



Рис. 3.2 Характерные временные масштабы

Время, в течение которого протекают процессы, в физических системах существенно меньше, чем в системах социальных. Некоторые процессы в социальных системах могут иметь характерный временной масштаб, сопоставимый (или даже превышающий) время человеческой жизни. Поэтому для исследования подобных процессов в социальных системах может потребоваться время, равное времени жизни нескольких поколений. На таких временных масштабах очень сильно меняются методика сбора данных, подходы к их обработке и т.п. Все это очень затрудняет исследование социальных систем. Физические системы с этой точки зрения существенно более удобны — характерное время процессов, протекающих в таких системах, существенно меньше времени человеческой жизни, что позволяет исследователям проводить серии экспериментов за небольшой промежуток времени.

Воспроизвести по-новому еще раз ситуацию в социальной системе невозможно: если исследователя интересует какое-либо историческое событие (скажем, революция), то нельзя «вернуть» ситуацию «на исходные позиции» и после этого снова «запустить» процесс. Историк вынужден иметь дело с историческими документами, которые несут на себе отпечаток субъективных оценок; исторические документы могут быть искажены или даже фальсифицированы. Наконец, в физической системе можно спланировать и провести интересующий эксперимент, в то время как поставить эксперимент в социальной системе существенно более проблематично. Именно поэтому физические системы оказались более хорошо изученными как экспериментально с помощью хорошо развитого в физике инструментария и методик, так и теоретически с использованием математического аппарата; по ним накоплен большой объем данных.



Численные значения характеризующих систему величин. Переменные и параметры. Для того чтобы охарактеризовать систему, используется определенный набор величин. Все величины можно разделить на параметры и переменные. Переменные — это величины, которые могут изменяться при рассмотрении процесса, а параметры — это такие величины, которые в рамках рассматриваемой задачи могут считаться постоянными (такое деление в некоторой степени условно).

Переменные величины, в свою очередь, подразделяются на независимые переменные и зависимые (которые также называют функциями). Под независимыми переменными понимают такие переменные величины, которые в рамках данной задачи изменяются независимо от рассматриваемой системы. В качестве независимых переменных, как правило, выделяют время и пространственные координаты. Математиками найдено огромное число различных функций. К наиболее популярным относятся линейная, квадратичная зависимости, гармонические функции у = sin(х), у = cos(x) и экспонента у = ех.



Динамический и статистический подходы к описанию объектов и явлений. Динамический подход к описанию объектов и явлений является отражением детерминизма (учение о закономерности и причинной обусловленности всех явлений природы и общества). В рамках этого подхода предполагается, что если точно задать все начальные условия и указать все факторы, которые влияют на поведение рассматриваемой системы, то можно сколь угодно точно и однозначно предсказать все последующие состояния системы). Статистический (вероятностный) подход не претендует на точное описание и прогноз состояния системы. Центральным моментом здесь является понятие «вероятность», и описание системы сводится к заключению о том, что некоторое событие может произойти (а может и не произойти) с некоторой вероятностью.

Линейность и нелинейность. Функция является линейной, если ее графиком является прямая линия, а в формуле, задающей вид функции, отсутствуют нелинейные слагаемые (рис. 3.3).

Рис. 3.3. Примеры некоторых линейных и нелинейных функций

На одинаковые приращения независимой переменной линейная функция беспристрастно (т. е. независимо от значения независимой переменной) откликается одинаковыми приращениями. Это означает, что линейная зависимость не обладает избирательностью. Она не может описывать ни резонансных всплесков, ни насыщения, ни колебаний — ничего, кроме равномерного неуклонного роста или столь же равномерного и столь же неуклонного убывания.

Фракталы. Наряду с привычными геометрическими объектами – «прямая», «линия», «плоскость», «поверхность» – существует понятие «фрактал», с которым связано понятие фрактальной размерности. Под фракталами понимают множества, демонстрирующие на разных масштабах разрешения своей геометрической структуры свойства подобия в строгом или приближенном смысле, а также объекты в природе, обладающие этим свойством, хотя бы приближенно, в достаточно широком интервале масштабов. Понятие «фрактал» широко вошло в обиход благодаря математику Бенуа Мандельброту (подробнее см. Бенуа Мандельброт. (Не)послушные рынки: фрактальная революция в финансах). Ему принадлежит следующее определение: «Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому».

Пример фрактала — снежинка Коха (рис. 5). Ее построение начинается с равностороннего треугольника, затем на каждой стороне средняя треть заменяется ломаной линией, состоящей из двух отрезков такой же длины. Эта процедура повторяется до бесконечности, в результате чего получается область с фрактальной границей.



Рис. 3.4. Построение снежинки Коха

Еще один фрактальный объект — салфетка Серпинского. В его основе лежит равносторонний треугольник, который можно разбить на четыре одинаковых равносторонних треугольника и удалить центральный (рис. 3.5). То же самое проделывается с каждым оставшимся треугольником до бесконечности.

Рис. 3.5. Построение салфетки Серпинского

Фрактальные объекты часто встречаются и в природе (рис. 3.6).

Рис. 3.6. Лист папоротника, цветная капуста, структура ручья

Почему фрактальные объекты столь широко распространены в природе? Одной из причин является характерная особенность строения фракталов: фрактальный объект на плоскости занимает ограниченную площадь, в то время как его длина стремится к бесконечности. Аналогично, «объемные» фракталы характеризуются относительно малым объемом, но большой площадью поверхности. А это очень удобно для Природы! Действительно, какую функцию, например, выполняют легкие человека? Они должны обеспечивать эффективное взаимодействие между кровью и воздухом. Очевидно, что чем больше поверхность, на которой происходит такое взаимодействие, тем лучше. Аналогично, фрактальным образом устроена кровеносная система живых организмов (рис. 3.7), корневая система растений (здесь задача все та же — при малом объеме обеспечить большую поверхность соприкосновения) и пр. 

Рис. 3.7. Фрактальная жизнь: строение кровеносной системы; нижний рисунок является увеличенным фрагментом верхнего



Лекция четвертая. Динамическая система

Что такое «динамическая система»? Динамическая система является моделью какой-либо реальной физической, химической, биологической, социальной или любой другой системы. Для того чтобы определить динамическую систему, необходимо:

  1. Задать набор величин (переменных), однозначно характеризующих состояние системы.

  2. Задать правило (оператор эволюции), по которому, зная текущее состояние системы, можно определить (предсказать) ее состояние в следующий момент времени.

Динамические системы являются видом математических моделей, отражающих мировоззренческий принцип детерминизма.

С понятием «динамическая система» тесно связаны понятия «фазовое пространство». Например, предположим, что нужно рассмотреть эволюцию системы домашняя кошка. В качестве переменных величин, характеризующих эту систему, выберем рост кошки и вес кошки. Сначала, будучи котенком, кошка имеет небольшой рост и вес (см. точку 0 на рис. 4.1). Затем, по мере взросления, рост и вес кошки увеличиваются (точки 1–4), и кошка достигает «расцвета сил» (точка 5). После этого рост кошки уже не изменяется, а вес уменьшается (точки 6–9).



Рис. 4.1. Зависимость роста и веса кошки от времени

Этот же самый процесс можно изобразить по-другому: отложить по одной оси рост, а по другой — вес кошки (рис. 4.2). Тогда каждая точка на плоскости (рост; вес) будет однозначно характеризовать состояние системы «домашняя кошка». Верно и обратное — каждое состояние рассматриваемой системы можно представить точкой на этой плоскости. Таким образом, имеет место взаимно однозначное соответствие между состоянием, в котором находится кошка, и точкой на плоскости (рост; вес). Такая плоскость, по осям координат которой откладываются переменные величины, характеризующие состояние системы, называется фазовой плоскостью. Если бы переменных величин, характеризующих состояние системы, было бы не две, а больше (скажем, три), то речь шла бы не о фазовом пространстве.

Рис. 4.2. Фазовая плоскость с фазовой траекторией для динамической системы домашняя кошка

Сначала, когда кошка является маленьким котенком, ее рост и вес невелики (точка 0 на рис. 4.1). На фазовой плоскости изображающая точка находится в этот момент времени около начала координат (точка 0 на рис. 4.2). Затем, когда кошка взрослеет, изображающая точка двигается по фазовой плоскости в сторону больших значений роста и веса (точки 2–5, рис. 4.2). Когда кошка начинает стареть, ее рост практически не изменяется, а вот вес уменьшается, поэтому изображающая точка двигается по фазовой плоскости так, что ее координата «рост» остается постоянной, а координата «вес» неуклонно уменьшается (точки 5–9, рис. 4.2). Линия, по которой двигается изображающая точка, называется фазовой траекторией. Таким образом, фазовая траектория характеризует эволюцию системы с течением времени, каждая точка фазовой траектории соответствует определенному состоянию системы в тот или иной момент времени. И если на графиках зависимости переменных, характеризующих состояние системы от времени, течение времени проявляется в том, что нужно рассматривать все большее значение по оси абсцисс (по горизонтальной оси), то на фазовой плоскости ход времени проявляется в движении изображающей точки по фазовой плоскости.

Среди динамических систем можно выделить два больших класса: динамические системы с дискретным и непрерывным временем.




  1   2   3   4   5   6   7


База данных защищена авторским правом ©ekollog.ru 2017
обратиться к администрации

войти | регистрация
    Главная страница


загрузить материал