Технологическая часть 1 Физико-химические свойства пластовых жидкостей и газов



Скачать 456.1 Kb.
страница1/3
Дата02.05.2016
Размер456.1 Kb.
  1   2   3
Вопросам потерь нефти непосредственно на объектах ее добычи, сбора и подготовки нефти не придавалось достаточного значения. Однако, от этого острота и необходимость его решения никогда не уменьшалась. Значительны эти потери на нефтепромыслах. Развитие техники и технологии сбора и подготовки нефти на помыслах, большие объемы добычи нефти на вновь открытых месторождениях, реконструкция системы внутрипромыслового транспорта нефти и газа вызывают необходимость и изучения природы и причин из возникновения и разработки мероприятий по их сокращению.

Основными источниками загрязнения атмосферы в нефтепромысловом хозяйстве являются испарения, обусловленные негерметичностью оборудования и сооружений.

В последнее время установки комплексной подготовки нефти оснащаются системой улавливания легких фракций, которая основана на сборе продуктов испарения.

Система улавливания легких фракций обеспечивает сохранность углеводородов, устраняет потери нефти и выбросы вредных веществ в атмосферу, повышает надежность резервуарного хозяйства за счет снижения коррозионной активности газовой среды в результате предотвращения попадания воздуха в резервуары. Повсеместная герметизация с помощью систем УЛФ промысловых резервуаров позволило сократить потери углеводородов из них и внести существенные изменения в технологию ступенчатой сепарации продукции скважин.



Технологическая часть
1.1 Физико-химические свойства пластовых жидкостей и газов.
Свойства и состав нефти изучены по глубинным и поверхностным пробам. Свойства пластовой нефти пласта DIII оценивались по результатам исследования поверхностных проб. Оцененное значение вязкости составило 3,4 мПа∙с, плотности – 0,806 т/м3, давление насыщения – 7,5 МПа..

Исследования девонских нефтей показали, что нефти пласта DII несколько тяжелее, более газонасыщенны и имеют повышенное давление насыщения. Распределение давления насыщения нефти газом по данным Желонкина А.И. показало, что давление насыщения пласта DI на Туймазинской площади уменьшается от центра залежи к периферии (от 9,4 до 8,2 МПа), за счёт чего и отмечается некоторое увеличение плотности и вязкости нефти. На Александровской площади нефть в пластовых условиях имеет меньшую плотность и вязкость.

Плотность разгазированной нефти пласта DII по новым данным составила 851 кг/м3, вязкость при 20 оС - 9,8 мПа∙с, содержание серы - 1,6 %. Пластовые воды терригенного девона относятся к хлоркальциевому типу. Общая их минерализация составляет 266 г/л, а плотность достигает 1190 кг/м3. Соли, находящиеся в растворе, представлены практически только хлоридами, среди которых преобладает хлорид натрия. В растворе находится около 200 мг/л закисного железа, бария до 100 мг/л и стронция от 100 до 500 мг/л. Химическая характеристика вод приведена в таблице 1.2. Воды пластов DI и DII имеют близкий солевой состав и по отдельным анализам различить их затруднительно.

Средняя плотность разгазированной нефти пласта DI по двум определениям составила 863 кг/м3, вязкость при 20оС - 20,0 мПа∙с при диапазоне изменения 7,0 - 33,0 мПа∙с; содержание серы - 1,5 %, смол силикагелевых - 12,7 %, асфальтенов и парафинов по одной пробе соответственно 2,97 и 3,12 %.

Характеристика поверхностных нефтей девонских пластов показывает, что нефти пластов DI, DII, DIII, DIV лёгкие (847 – 856 кг/м3), маловязкие (8,7 - 10,9 мПа∙с), сернистые (1,1 - 1,5 %), смолистые (8,95 - 14,1 %), парафинистые (4,8 - 5,5 %).

Данные исследований показывают, что нефти девонских пластов DI, DII и DIV схожи между собой и характеризуются следующими свойствами: плотность - 847 - 856 кг/м3, вязкость при начальном пластовом давлении в пласте DI - 1,95 - 3,22 мПа·с, в пласте DII - 2,46 - 3,18 мПа·с, в пласте DIV - 2,9 - 3,22 мПа·с. Средние значения давления насыщения составляют: в пласте DI - 9,12 МПа, в DII - 9,57 МПа и в DIV - 8,62 МПа. Средние значения газосодержания нефтей равны: для пласта DI - 62 м3/т, DII - 64 м3/т, DIV - 55 м3/т.

Свойства нефтей фаменского яруса определялись по поверхностным пробам, отобранным из трёх скважин. Нефть тяжёлая - 910 кг/м3, высоковязкая - 89,8 мПа∙с, высокосернистая - 4,45 %. По своим параметрам она близка к нефтям терригенной толщи нижнего карбона и турнейского яруса. Параметры пластовой нефти оценивались по результатам исследования поверхностных проб. Вязкость пластовой нефти составила 37,8 мПа∙с, плотность – 0,899 т/м3, давление насыщения – 4,3 МПа.

Свойства пластовой нефти турнейского яруса (C1t) изучены по двум пробам, отобранным из скважины 1382. В пластовых условиях плотность равна 868 кг/м3, вязкость - 17,4 мПа∙с, газосодержание - 10,4 м3/т.

В компонентном составе нефтяного газа преобладает метан, присутствует сероводород. В поверхностных условиях нефти турнейского яруса тяжёлые - 893 кг/м3, вязкие - 32,3 мПа∙с, смолистые - 13 %, сернистые - 2,8 %, парафинистые - 3,7 %. Пластовая нефть терригенной толщи нижнего карбона характеризуется следующими свойствами: плотность - 864 кг/м3, вязкость - 12,4 мПа∙с, давление насыщения - 6,3 МПа, газосодержание - 22,0 м3/т. В газах преобладают метан, этан, пропан. Сероводород присутствует в количестве 0,8 - 1,4 %, в пластовой нефти- 0,15 %.

Газ пласта DIV отличается меньшим содержанием азота и пропана и большим содержанием метана и этана. Состав газа пластов DI и DII практически одинаков. Характерным для девонских попутных газов является: отсутствие сероводорода, относительная плотность выше 1, наличие азота, гелий и аргон. Газы Туймазинского месторождения относятся к жирным.

Пластовые воды девонских пластов представляют собой хлоркальцевые рассолы. Общая минерализация их составляет 275 г/л, а плотность достигает 1190 кг/м3. Газосодержание в водах составляет 2,73 м3/т. Характерной особенностью девонских вод является значительное содержание в них закисного железа и повышенное содержание бром. Среди анионов преобладает содержание ионов хлора 4,49 млн. молей/м3, из катионов значительно содержание натрия - 3,3 млн. молей/м3. Воды горизонтов карбона характеризуются хлоркальциевым, хлорнатриевым типами. Встречается сероводород. Воды пермских отложений сульфатнонатриевого типа.

Компонентный состав газа приведен в таблице 1.


Таблица 1–Компонентный состав газа

Наименование компонентов

и показателей



Значение (% от объема)

N2

15,41

CH4

19,25

C2H6

15,65

C3H8

17,96

4Н10 iC4H10

3,02

NC4H10

4,26

iC5H12

1,51

C6+высш.

1,46

СО2

0,66

На месторождениях республики Башкортостан добываются девонские и высокосернистые нефти. До недавнего времени сбор, транспорт и подготовка девонских нефтей осуществлялись с использованием негерметичных резервуаров большого объема, работающих при атмосферных давлениях.

Технологические схемы сбора, транспорта и подготовки продукции скважин были разработаны с учетом объемов добычи нефти и газа, их физико-химических и реологических свойств в соответствии с этими характеристиками определялось число ступеней сепарации газа, отделения и утилизации основного объема пластовой воды, выбиралось количество и конструкция технологического оборудования в системе сбора, транспорта и подготовки нефти. Однако, если сепараторы изначально были герметичными, то резервуары на товарных парках долгие годы оставались негерметичными, являясь основным источником потерь легких фракций нефти за счет испарения через неплотности, имеющиеся по проектным рещениям.
1.2 Состояние борьбы с потерями на объектах нефтяной отрасли
Около 90 % всех видов загрязнения атмосферы приходится на деятельность человека в сфере разработки и утилизации энергоресурсов. Для нефтяной промышленности в негативном воздействии на воздушный бассейн среди добывающих и перерабатывающих отраслей составляет 5,1 %. Но не только атмосфера, а и другие компоненты окружающей среды подвержены техногенному воздействию. По ориентировочным оценкам 75% углеводородных загрязнений приходится на атмосферу, 20% на поверхностные и подземные воды и 5% накапливается в почвах. В свою очередь выбросы и сбросы углеводородных загрязнителей являются следствием незавершенности производственных циклов, неотлаженности технологий и негерметичности используемых оборудования и сооружений[1].

До конца восьмидесятых годов природоохранная деятельность в нефтяной промышленности не носила целевой направленности в части изучения влияния и оценки воздействия нефтяных загрязнений на состояние биосферы, а имела ресурсосберегающий характер. Выполнение плановых нефтегазосберегающих технико-технологических и организационных мероприятий отражалось в снижении действующих нормативов технологических потерь нефти и нефтяного газа. Характеризуя в целом технический уровень нефтепромысловых процессов, нормативы потерь не могут быть использованы для установления величины выбросов в атмосферу, т.к. не дифференцированы по газовой и жидкой составляющим потерь и, устанавливались как средневзвешенные по нефтепромысловым процессам без градации по источникам выделения. Поэтому они методически не вписываются в унифицированную систему работ по нормированию выбросов загрязняющих веществ, являющаяся обязательной для действующих, проектируемых и реконструируемых предприятий независимо от ведомственной принадлежности. В то же время нормативы потерь являются важными показателями производственной деятельности предприятий нефтяной промышленности и используются при учете выработки запасов углеводородных ресурсов и количества добытой нефти.

Гарантией эффективной реализации природоохранных мер в настоящее время следует считать не только повсеместное создание территориальных структур управления природопользованием, но и системно разработанные правовые основы стандарты, правила и нормативные акты, которыми необходимо руководствоваться при установлении ПДВ.

Обязательный характер установления указанных нормативных показателей диктует необходимость проведения работ по систематизации нефтепромысловых источников выделения загрязняющих веществ по специфическим признакам подобия, свойствам и фазовому составу пребывающих в них рабочих сред, технологическим параметрам и режимам их эксплуатации, позволяющим формировать и обосновать требования к нормативам потерь и предельно допустимых выбросов, выбор и разработку эффективных мероприятий по их снижению[1].



1.3 Источники потерь углеводородов
На процесс испарения нефти и нефтепродуктов из резервуаров в статических условиях существенно влияют температура окружающей среды, активность солнечной радиации, давление и объем газового пространства, площадь контакта нефтепродукта с газовым пространством, атмосферное давление и др.

Известно, что при изменении уровня жидкости, температуры или дегазации в транзитных процессах подготовки нефти, выделяющиеся газы и пары выходят из резервуаров через специальные дыхательные устройства в атмосферу. Дыхание резервуаров является причиной потерь от испарения нефти и загрязнения окружающей среды.

Объем потерь нефти и нефтепродуктов при их хранении также зависит от условий работы резервуарных парков. Так, потери от испарения в резервуарных парках нефтеперерабатывающих предприятий разделяются на следующие составляющие:

- потери от вентиляции газового пространства 60-65 %;

- от "больших дыханий" 32-34%;

- от "малых дыханий" 3-6%;

Высокий процент потерь при вентиляции газового пространства объясняется нарушением требований герметизации резервуаров (особенно крыш), потери от "больших дыханий" обусловлены высокой оборачиваемостью резервуаров. В условиях длительного хранения нефтепродуктов потери происходят в основном при "малых дыханиях".

На начальной стадии разработки месторождения, вплоть до 1972 г., определяющим фактором негерметичности была индивидуальная технологическая схема внутрипромыслового сбора нефти и газа.

На месторождении горели сотни факелов, находились в работе насосы откачки, трапы, открытые мерники, функционировали промежуточные и центральные нефтепарки. С переходом на герметизированную систему сбора центр тяжести потерь углеводородов переместился в резервуарные нефтепарки.
1.4 Оценка величины потерь углеводородов
Большинство исследовательских работ, проведенных в различные годы по определению величины потерь из промысловых резервуаров к настоящему времени устарели. Изменения в системе сбора и подготовки нефти наряду с изменением режимов разработки месторождений приводят к изменениям не только величины, но и качества потерь продуктов. Поэтому исследования потерь на месторождениях должны проводиться периодически и регулярно. Правильный и своевременный учет потерь позволит более точно определить количество извлеченного из недр продукта. Необходимо знать величины и качество потерь на всем пути движения нефти от скважин до НПЗ.
Таблица 2 - Величины потерь с распределением их по промысловым объектам[7].

Характер

потерь


Объекты

потерь


Количество, %

газопаро

образные


жидкие

Всего

Потери легких

фракций нефти и газа



Мерники на скв.

открытые групповые

установки


0,34




0,34

Газ, сжигаемый на факелах на скв.

Скв, не подкл-

юченные к газосбор.сетям



0,122




0,122

Газ, сжигаемый на факелах на КС

КС

0,566




0,566

Газ и конденсат при транспортировке от скв до газобензинового завода

Дрипы на газопроводах

0,023

0,05

0,073

Нефть в сальниковых уплотнениях

Устьевые сальники штанг, насосы

-

0,004

0,004



Нефть при авариях

Порывы

-

0,074

0,074

Нефть в процессе подземных ремонтов

Устья эксплуатационных скв.




0,013

0,013

Мягкие фракции при больших и малых дыханиях

Сырьевые резервуары

0,207




0,207

Итого до установок по подготовке




1,258

0,141

1,399

Легкие фракции обессоленной и стабилизиров. нефти прии больших и малых дыханиях

Товарные резервуары

0,34




0,34

Нефть при очистке резервуаров

Резервуары, отстойники




0,14

0,14

Нефть с пластовой водой

Резервуары, отстойники




0,03

0,03

Итого на установках по подготовке и товарному парку




0,634

0,17

0,51

Всего потерь




1,598

0,311

1,909

Из таблицы 2 видно, что наибольшие потери нефти и газа имеют место на участке от скважин до установок по подготовке нефти , где сумма потерь составляет 1,399% .

Наибольшие потери наблюдаются из мерников групповых установок, сырьевых резервуаров в процессе их больших и малых дыханий.

На этих объектах суммарная величина потерь составляет 1,235% или 86,64% от общей величины потерь на пути от скважины до установок по подготовке (система безнапорная открытая).

Непосредственно на установках по подготовке потери составляют 0,51% или 26,7% от общей величины промысловых потерь нефти.

Наибольшие потери на этом участке технологической схемы сохраняются также, как и в предыдущем случае, в резервуарах в процессе малых и больших дыханий.

Из табл.2 видно, что наибольшую часть потерь составляют газообразные и парообразные компоненты, тогда как величина потерь жидких продуктов составляет лишь 16,3 % от общей величины потерь.

1.5 Выводы и предложения по уменьшению потерь углеводородов
Расчеты и измерения, выполненные различными исследователями, показали, что выбросы паров нефти из резервуаров весьма значительны.

В настоящее время для утилизации (снижения потерь) легких фракций углеводородов при хранении нефти и нефтепродуктов применяются газоуравнительные системы, факельное сжигание, мембранное разделение смеси ЛФУ, азотное охлаждение, адсорбция (активированный уголь), абсорбция (нефтяные масла), плавающие крыши, понтоны и др.

Все эти разнообразные организационно-технические меры по сокращению потерь можно разбить на три группы:

- предупреждающие испарение нефти;

- уменьшающее испарения;

- меры по сбору продуктов испарения.

К первой группе относится обеспечение герметичности резервуаров. Ее отсутствие часто объясняется неисправностью кровли, что приводит к постоянному испарению и выветриванию выделяющихся из нефти газа и паров. Для поддержания резервуаров в технически исправном состоянии требовались значительные средства и сложная работа.

Вторым мероприятием первой группы является совершенствование технологии подготовки нефти с целью максимального отделения легких фракций до поступления ее в резервуары. Начиная с 1963 г., обезвоженная и обессоленная нефть стала подвергаться стабилизации в ректификационной колоне под давлением. По технологической схеме нефть из буферной емкости насосом подавалась через теплообменник и печь, в которых нагревалась до 200ºС, в стабилизационную колонну. Широкая фракция легких углеводородов из верхней части колонны поступала в кондесатор - холодильник и затем в газосепаратор. Газ из газосепаратора использовался в печах для нагрева нефти, а нестабильный бензин насосом подавался в емкости высокого давления и из них откачивался на газобензиновый завод. Часть бензина подавалась на верх колонны для орошения с целью поддержания заданной температуры. Товарная нефть, из которой были отобраны легкие фракции, с нижней части колонны насосом через теплообменники откачивалась в товарный парк.

Стабилизация нефти позволила значительно сократить потери легких фракций из товарных резервуаров. Если потери обессоленной нестабильной нефти составляли 0,52%, то у стабильной нефти они снизились до 0,16%. Отбор легких фракций составлял 3% от обессоленной нефти, что равно 70-75% потенциально возможного извлечения компонентов.

В 1982 г. появилась необходимость замены стабилизационных колонн и коренной реконструкции блоков стабилизации. В связи с повышенной опасностью дальнейшей эксплуатации оборудования и сооружения и неспецифичностью этой технологии для нефтедобывающих предприятий стабилизация нефти была прекращена[2].

Параллельно с внедрением блоков стабилизации на УКПН-1 проводили испытания плавающей крыши в резервуаре. Плавающая на поверхности нефти крыша почти полностью устраняла газовое пространство резервуара и таким образом предотвращала потери легких фракции от малых и больших дыханий. Однако это мероприятие после испытания развития не получило из-за несовершенства уплотнения со стенками резервуара.

"Принципами технической эксплуатации нефтебаз" для снижения потерь нефтепродуктов рекомендуется применять понтоны и диски отражатели, которые сокращают выбросы соответственно на 80 и 20 %. Однако, как показывают исследования, выполненные специалистами УГНТУ, рекомендуемые средства эффективны лишь в ограниченных областях: для понтонов при емкости резервуаров 5 тыс. м3 и более для дисков отражателей при коэффициенте более 60%.

Длительное время, до 1994 г., нефтяники "Туймазанефть" ограничились мероприятиями, уменьшающими испарения. Среди них - применение красок с высоким коэффициентом отражения. Наиболее распространенными из них были белые и алюминиевые, но причем белые краски в 1,48-1,8 раза эффективнее алюминиевых, но последние более практичны из-за долговечности и простоты процесса нанесения.

Все эти технологии имеют один главный недостаток – не могут гарантировано обеспечить решения задачи улавливания легких фракций углеводородов.

В 1994 г. началось внедрение мероприятий третьей группы, предусматривающих сбор продуктов испарения нефти из резервуаров. Сущность этого метода заключается в оснащении резервуарных нефтепарков специальной системой улавливания легких фракций. В настоящее время существует большое число данных установок, имеющих различные конструктивные исполнения и принцип работы.

Применение системы УЛФ на объектах ОАО "Башнефть" позволило:



  1. Улучшить экологическую обстановку и условия труда обслуживающего персонала не только непосредственно на самих объектах сбора хранения и подготовки нефти, но и в населенных пунктах районов добычи нефти.

  2. Уменьшить пожароопасность объектов.

  3. Повысить срок службы технологического оборудования на объектах за счет снижения интенсивности процессов внутренней коррозии и снятия напряжения в сварных стыках и швах кровли и верх поясов резервуаров.

  4. Сохранить кондиционные свойства нефти.

  5. Получить дополнительную прибыль от реализации уловленной продукции.



  1   2   3


База данных защищена авторским правом ©ekollog.ru 2017
обратиться к администрации

войти | регистрация
    Главная страница


загрузить материал