Влияние урбанизации на эколого-биологические свойства почв г. Ростова-на-Дону О. А. Капралова



Скачать 145.66 Kb.
Дата30.04.2016
Размер145.66 Kb.


Влияние урбанизации на эколого-биологические свойства почв г. Ростова-на-Дону
О.А. Капралова
Успешное решение проблемы экологического благополучия городов нуждается в информации, касающейся характера и условий загрязнения, специфики его воздействия на функционирование отдельных компонентов и урбоэкосистемы в целом.

Почвы городов образуются и функционируют под воздействием тех же факторов почвообразования, что и естественные, но ведущим является антропогенное воздействие. Антропогенные нарушения функционального круговорота в городской системе зависят от источника и вида вмешательства человека.

Среди антропогенных воздействий можно различать прямые, непосредственно влияющие на почву, и косвенные, влияющие на почву опосредованно, через изменение факторов почвообразования (климата, рельефа, почвообразующих пород, растительности и др.) [1].

Оказывая существенное влияние на все свойства почвы, антропогенный фактор выступает в качестве важного регулятора ее биологической активности.

Городские системы, в отличие от природных, подвергаются катастрофическим воздействиям с высокой степенью интенсивности, что часто приводит к гибели самой системы и образованию новой, а соответственно, и формированию нового почвенного покрова [2].

Почвы города рассматриваются в качестве целостных объектов или системы взаимодействующих друг с другом компонентов с характерными для данного уровня организации свойствами. Изменение в режимах функционирования подобных систем при воздействии факторов среды связаны с перестройками в структуре и функциях отдельных компонентов. Зависимость таких систем не только от природных, но и от антропогенных факторов обусловливает их особую отзывчивость на изменение среды, которая и проявляется в формировании режимов функционирования.

Классификация городских почв построена на особенностях профильно-генетического (морфологического) строения почвенного профиля как достаточно простого и универсального подхода, а также на характере почвообразующих пород и грунтов. Согласно этой классификации все почвы города разделяются на группы почв: естественных ненарушенных, естественно-антропогенных поверхностно-преобразованных (естественных нарушенных), антропогенных глубокопреобразованных – урбаноземов и почв техногенных поверхностных почвоподобных образований – урбо-техноземов.

Большинство выбросов токсических веществ в городскую среду сосредотачиваются на поверхности почвы, где происходит их постепенное депонирование, которое ведет к изменению химических и физико-химических свойств субстрата, что влияет на состояние биоты. В исследуемых почвах распределение подвижных форм тяжелых металлов неравномерное, поскольку зависит от выбросов в атмосферу, а также дифференцированного природного фона (табл. 1).

Расширение масштабов городской среды приводит к формированию современных городских почв, в значительной степени отличающихся от естественных природных. Почвенные биосистемы города подвергаются существенным структурным преобразованиям и это выражается прежде всего в перераспределении биологической активности почв в пределах почвенного профиля.

Ростов-на-Дону является крупным мегаполисом, промышленным центром юга России, на территории которого расположены предприятия машиностроительной, химической, пищевой промышленности, автомагистрали и другие источники загрязнения окружающей среды ТМ.

Цель работы — исследование влияния урбанизации на эколого-биологические свойства почв г. Ростова-на-Дону

Объектом данного исследования были городские почвы, отобранные в разных функциональных зонах города Ростова с глубин 0-20, 20-40 см.

Отбор образцов в г. Ростове-на-Дону проводили весной и осенью 2010 года в рекреационной зоне (парк им. Островского, парк им. Черевичкина, парк «Дружба», Студенческий парк ДГТУ, парк «Осенний и др.), промышленной зонах (район ГПЗ-10, заводы «Эмпилс», «Молот», «Ростсельмаш)) и в зонах максимальной транспортной нагрузки (перекресток пр. Буденовского и ул. Красноармейской, ул. Вятской и ул. 50 лет Ростсельмаш, площадь Гагарина, площадь Энергетиков, площадь Страны Советов и др.).

Использовали общепринятые в биологии почв методы [3]. В исследуемых почвах определяли активность ряда оксидоредуктаз и гидролаз, в частности: каталазы, полифенолоксидазы, инвертазы и уреазы. Влияние антропогенного воздействия также определяли по численности различных физиологических групп микроорганизмов (бактерии, актиномицеты, грибы) и общей потенциальной дыхательной активности почв.

Для рекреационных были характерны черноземы обыкновенные карбонатные, частично экранированные, для промышленных - индустриземы с участием экранированных урбаноземов и реплантоземов и в зоне максимальной антропогенной нагрузки исследовались урбаноземы сильно экранированные с реплантоземами [4].

Наиболее сохраненный почвенный покров парково-рекреационных зон городов был представлен черноземами обыкновенными карбонатными мощными и среднемощными преимущественно среднегумусными.

В селитебной зоне с преобладанием частных домовладений наиболее распространены урбаноземы мало- и среднегумусные мало- и среднемощные частично экранированные, а также черноземы и урбо-черноземы слабо- и среднегумусированные мало- и среднемощные на лессовидных суглинках.

В городской черте среднемощные виды немногим доминируют над мощными, что может служить подтверждением тенденции уменьшения протяженности профиля городских почв по сравнению с фоновыми, так как в данном регионе для этого подтипа черноземов характерно преобладание мощных видов. Это наглядный отпечаток урбанизации, т.к. присутствие среднемощных видов приурочено в основном к центральной части города, где на протяжении долгого времени они подвергались периодической срезке и перепланировке, что соответствующим образом отразилось на их мощности и дифференциации на генетические горизонты.

По гранулометрическому составу естественные почвы исследуемых городов, равно, как и погребенные, отнесены к разновидности тяжелых, и в редких случаях средних суглинков, с преобладанием фракций крупной пыли и ила. Гранулометрический состав насыпных слоев очень разнообразен, но, как правило, характеризуется преобладанием песчаных фракций.

В почвенной массе парково-рекреационных зон сохранилась агрегированность, присущая чернозему. Пористость в горизонте Ад достигает 90%, мезо- и микроагрегаты зернисто-округлые, поры агрегирования не замкнутые, разветвленные. Горизонт А1 уплотнен, тем не менее мезо- и микро- пористость в нем высока и составляет 40-50%, с преобладанием межагрегатных и биогенных пор, что напрямую связано с высокой деятельностью дождевых червей и корневых систем растений.

Максимальная деградация микростроения характерна для антропогенно-преобразованных почв. Наибольшее уплотнение имеют почвы селитебных участков, характеризующиеся повышенной антропогенной нагрузкой. В почвах газонов, палисадников, скверов, бульваров и парков плотность сложения изменяется в пределах от 1,0 до 1,6 г/см3 [5].

Приоритетными загрязнителями данных городов являются взвешенные вещества, углерод черный (сажа), диоксид серы и окислы азота.

Ростов-на-Дону относится к неблагополучным территориям по загрязнению медью, цинком и свинцом (Табл. 1).

Таблица 1

Концентрации тяжелых металлов в почвах

г. Ростова-на-Дону (по Приваленко, Безугловой, 2003)



Подтип почв

Концентрация цинка, мг/кг

Концентрация свинца, мг/кг

Концентрация меди, мг/кг

Концентрация марганца, мг/кг

Урбаноземы частично экранированные

300-600

100-200

100-200

500-1000

Черноземы обыкновенные карбонатные

100-300

32-100

5-35

100-500

Индустриземы

100-300

100-200

35-100

500-1000

Урбаноземы сильно экранированные

100-300

200-500

100-200

500-1000

При этом показатель рН в исследуемых почвах колебался от 7,1 до 8,1.

Изменение содержания гумуса с глубиной отмечалось только в урбаноземах частично экранированных города Ростова-на-Дону, где на глубине 20-40 см фиксировалось его увеличение.

В почвах Ростова-на-Дону весной 2010 г. максимальное количество микроорганизмов в верхнем слое было зафиксировано в урбаноземах сильно экранированных (3,12×106 КОЕ / г почвы). Более низкое содержание бактерий отмечалось в индустриземах, а минимальное – в урбаноземах частично экранированных и в черноземах.

В сильно экранированных урбаноземах города Ростова количество микроорганизмов составило 3,43×106 КОЕ / г почвы. В остальных исследуемых почвах их количество было в 2,86 – 3,20 раза ниже и колебалось от 1,07×106 КОЕ / г почвы до 1,20×106 КОЕ / г почвы.

При этом в индустриземах происходило достоверное уменьшение численности бактерий в нижнем слое, а в урбаноземах сильно экранированных, наоборот, - в нижнем слое их число возрастало.

Во всех почвах г. Ростова, урбаноземов сильно экранированных, отмечено статистически достоверное снижение активности каталазы на глубине 20-40 см.

Таблица 2 Эколого-биологические свойства почв г. Ростова-на-Дону


П/тип почв


Глубина


Каталаза, мл О2 / мин на г почвы

Полифенолоксидаза, мг пурпургал-лина на100г почвы / 30 мин

Инвертаза, мг глюкозы / г почвы за 24часа

Уреаза, мг NH3 / 10 г почвы за 24 часа

Azoto-bacter

(%)


Урбаноземы частично экранирован.

0-20 см

5,37


46,33


0,21


0,49


94,67


20-40 см

4,53


49,00


0,04


0,31


54,67

Черноземы обыкновенные карбонатные

0-20 см

4,80


50,00


0,20


1,13


21,33


20-40 см

3,23


49,67


0,02


0,66


20,00

Индустриземы



0-20 см

1,47


49,67


0,20


0,75


99,33


20-40 см

0,63


43,00


0,30


1,05


28,67


Урбаноземы сильно

экранирован.




0-20 см

2,47


41,67


0,27


0,51


52,00


20-40 см

2,27


27,33


0,52


0,55


98,67


При анализе показателей микробиологической активности почв исследуемых урболандшафтов Ростова-на-Дону установлено, что в численность микроорганизмов в индустриземах и урбаноземах сильно экранированных была значительно выше, чем в урбаноземах частично экранированных и черноземах обыкновенных карбонатных. Такая тенденция была отмечена как в весенний, так и в осенний период; как на глубине 0-20 см, так и на глубине 20-40 см. Вероятно, степень загрязнения индустриземов оказывает симулирующий эффект как на микрофлору, так и на протекание микробиологических процессов.

Все исследуемые группы микроорганизмов, за исключением актиномицетов, характеризовались более высокой численностью в осенний период, когда в почву поступает достаточно большое количество органических веществ.

Кроме того, видно, что чаще всего в городе максимальные значения численности актиномицетов отмечались в индустриземах. Это можно объяснить достаточно высокой устойчивостью актиномицетов, обусловленной многообразием метаболических возможностей и, как следствие, способностью «лучистых грибков» хорошо усваивать углеводороды (керосин, парафин, бензин). В литературе описаны культуры актиномицетов и проактиномицетов, которые способны потреблять углерод из других органических соединений, трудно поддающихся разложению (каучук, поливиниловые пленки, битумы, асфальты)[6].

Численность актиномицетов в разные периоды исследования варьировала незначительно, что может свидетельствовать о стабильном состоянии данной группы и ее способности адаптироваться к условиям окружающей среды.

Следует отметить, что образцы индустриземов также характеризовались высоким содержанием микромицетов в течение всего периода исследований. Объяснить это можно устойчивостью грибов к высоким концентрациям в почвах таких тяжелых металлов, как медь, никель, кобальт и некоторых других [7]. А так же установлено, что при увеличении концентрации нефтепродуктов в почве происходит резкий рост численности микромицетов.

Что касается свободноживущих азотфиксаторов, то в весенний период исследуемые образцы почв имели более выраженную динамику изменения их содержания в образцах почв разных урболандшафтов городов. Это может быть связано с уменьшением количества органического вещества, вследствие чего представители р. Azotobacter стали более чувствительными к антропогенному воздействию. Кроме того, в этот же период была более выражена динамика активности азотфиксаторов на разных глубинах. При этом в основном отмечалось снижение их активности с глубиной. И это вполне объяснимо, т.к. представители рода Azotobacter являются аэробными микроорганизмами.

Максимальное содержание представителей р. Azotobacter характерно для урбаноземов частично экранированных. При этом в черноземах обыкновенных карбонатных города Ростова-на-Дону их содержание было минимальным. Высокое содержание свободноживущих азотфиксаторов в урбаноземах частично экранированных, возможно, связано с наличием загрязнения нефтепродуктами. Установлено, что Azotobacter chroococcum участвует в окислении углеводородов нефти: при его культивировании на жидкой среде Эшби с нефтью в качестве единственного источника углерода отмечено снижение концентрации углеводородов на 52% [8].

В весенний период черноземы обыкновенные характеризовались максимальной активностью каталазы, что возможно объясняется развитием микромицетов и представителей рода Azotobacter, являющихся аэробными микроорганизмами. Во всех статистически достоверных случаях наблюдалось уменьшение активности данного фермента с глубиной. Это вполне объяснимо, т.к. с глубиной снижается содержание кислорода в почве и уменьшается поступление свежего органического вещества.

Из полученных данных видно, что низкий уровень активности каталазы характерен для индустриземов сильно экранированных города Ростова, несмотря на развитие в этих зонах популяций актиномицетов и микромицетов. Следовательно, можно сделать вывод, что каталаза является ферментом, чувствительным к антропогенному воздействию и ингибирование данного фермента может быть использовано для диагностики данного рода воздействий.

При анализе полученных данных установлено, что черноземы обыкновенные и индустриземы характеризовались наиболее высокими значениями показателя активности полифенолоксидазы. Максимальные значения полифенолоксидазной активности, зарегистрированные в черноземах, возможно, обусловлены достаточно высоким поступлением органических веществ. А высокие показатели в индустриземах и урбаноземах сильно экранированных (весной) объяснимы поступлением высокомолекулярных соединений, в том числе фенолов, в составе промышленных и транспортных выбросов.

Исходя из полученных данных установлено, что из исследуемых ферментов индикаторами загрязнения можно считать каталазу и полифенолоксидазу, активность которых резко снижается в загрязненных почвах, в то время как инвертазная активность максимальна в нижнем слое зоны максимального загрязнения.

В результате исследования установлено, что в осенний период происходило статистически достоверное снижение активности полифенолоксидазы с глубиной. Это объясняется тем, что полифенолоксидаза катализирует процессы окисления фенолов в присутствии кислорода воздуха, а с глубиной его содержание естественно уменьшается. Кроме того с глубиной уменьшается и численность бактерий, которые способны вырабатывать данный фермент.

Максимальные значения показателя активности инвертазы осенью приходились на урбаноземы сильно экранированные, а весной – на черноземы и индустриземы. При этом инвертазная активность ростовских почв коррелировала с показателем кислотности.

В большинстве случаев происходило снижение активности инвертазы с глубиной. Это можно объяснить уплотнением верхнего слоя, что значительно затрудняет поступление влаги, кислорода и свежего органического вещества.

Почвы г. Ростова характеризовались высокой численностью актиномицетов и микромицетов и высокой интенсивностью дыхания.

Следует отметить, что при биодиагностике городских почв, целесообразнее концентрироваться на показателях верхнего слоя, т.к. именно он подвергается большему антропогенному воздействию и принимает загрязнения, вследствие чего его показатели характеризуются более выраженной динамикой изменения в ходе урбанизации территорий.

Для почв урбанизированных территорий характерно увеличение микробиологической активности на фоне снижения ферментативной активности. Следовательно, можно говорить о том, что в условиях города происходит снижение ферментативной активности микроорганизмов, что приводит к компенсаторному увеличению их численности.

Таким образом, исследуемые показатели позволяют судить об изменениях биологической активности почв под действием антропогенного пресса и могут служить теоретической основой для разработки методов мониторинга состояния урбаноземов.
Литература
1. Лебедева И.И., Тонконогов В.Д. Некоторые аспекты антропогенной эволюции лесных и степных почв европейской территории Союза // Естественная и антропогенная эволюция почв. – Пущино, 1988. – С. 123-127.

2. Герасимова М.И., Строганова М.Н., Можарова Н.В., Прокофьева Т.В. – Антропогенные почвы: генезис, география, рекультивация.- Смоленск: Ойкумена, 2003. – 268 с.

3. Вальков В.Ф., Казеев К.Ш., Колесников С.И. Методология исследования биологической активности почв на примере Северного Кавказа // Научная мысль Кавказа. Изд-во СКНЦВШ. 1999. № 1. С. 32-37.

4. Приваленко В.В., Безуглова О.С. Экологические проблемы антропогенных ландшафтов Ростовской области. Т.1 , Ростов-на -Дону, СКНЦ ВШ, 2003 .

5. Иванин В.М., Авдонин В.Е. Эрозия бурых лесных почв в связи с рекреационной дигрессией // Почвоведение. – 2000. - № 7. – С. 53-65.

6. Калакутский Л.В., Агре Н.С. Развитие актиномицетов.- М.; Наука,1977. – 285 с.

7. Колесников С.И., Пономарева С.В., Казеев К.Ш., Вальков В.Ф. Ранжирование химических элементов по степени их экологической опасности для почвы // Доклады РАСХН. 2010. № 1. С. 27-29.

8. Рысбаева Г.А. Роль спонтанной и внесенной микрофлоры в биодеградации углеводородов нефти в нефтезагрязненных почвах ЮКО: Автореф. дис…канд. биол. наук. – Алматы, 2007. – 24 с.







База данных защищена авторским правом ©ekollog.ru 2017
обратиться к администрации

войти | регистрация
    Главная страница


загрузить материал